MAT137Y1 – LEC0501 *Calculus!*

Power series and Taylor series: Applications

April 3rd, 2019

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Apr 3, 2019

Other operations with Taylor series

Obtain the **terms of degree less than or equal to 4** of the Maclaurin series of these functions:

 $f(x) = e^x \sin x$

 $g(x) = e^{\sin x}$

Hint: Treat the power series the same way you would treat a polynomial.

Follow-up questions: Compute $g^{(3)}(0)$ and $g^{(4)}(0)$.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Apr 3, 2019 2

Limits

Compute these limits by writing out the first few terms of the Maclaurin series of numerator and denominator:

4 Find a value of $a \in \mathbb{R}$ such that the limit

$$\lim_{x \to 0} \frac{e^{\sin x} - e^x + ax^3}{x^4}$$

exists and is not 0. Then compute the limit.

Consider the function

$$F(x) = \int_0^x \frac{\sin t}{t} \, dt.$$

It is not possible to find an elementary antiderivative.

• Write F(x) as a power series.

2 Estimate F(1) with an error smaller than 0.01.

More series

Add these series:

Hint: Take derivatives or antiderivative of series whose value you know.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Apr 3, 2019 6

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Apr 3, 2019

More power series

For each of the following power series:

- a Determine the radius of convergence, and,
- b write them in terms of usual functions when *x* is in the interior of the interval of convergence.

1
$$\sum_{n=0}^{+\infty} (-1)^{n+1} n x^{2n+1}$$

3 $\sum_{n=0}^{+\infty} (n^2 + 1) 2^{n+1} x^n$
2 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{4n} x^{4n-1}$

Parity

- Let f be an odd C^{∞} function. What can you say about its Maclaurin series? What if f is even?
 - *Hint:* Think of sin and cos.
- Prove it.

Hint: Use the general formula for the Maclaurin series. What can you say about h(0) if *h* is odd? If *h* is even?

8

A C^{∞} but not analytic function

Consider the function $F(x) = \begin{cases} e^{-1/x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$ 1 Prove that, for every $n \in \mathbb{N}$, $\lim_{t \to +\infty} t^n e^{-t} = 0.$ 2 Prove that, for every $n \in \mathbb{N}$, $\lim_{x \to 0^+} \frac{e^{-1/x}}{x^n} = 0.$ 3 Compute F'(x) for x > 0.4 Compute F'(x) for x < 0.5 Compute F'(0) from the definition. 6 Compute F''(0) from the definition. 7 Prove that for every $n \in \mathbb{N}$, $F^{(n)}(0) = 0.$ 3 Write the Maclaurin series for F at 0. 9 Is F analytic? Is $F C^{\infty}$?

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Apr 3, 2019

An interesting power series¹

Denote by a_n the *n*-th decimal digit of π .

Define the power series $S(x) = \sum_{n=1}^{\infty} a_n x^n$.

Find the radius of convergence and the interval of convergence of *S*.

Hint:

9

So
$$a_1 = 1$$
, $a_2 = 4$, $a_3 = 1$, $a_4 = 5$...

¹From the lecture of March 25.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Apr 3, 2019 10