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Recap 1: Power series

+o00

© Given a power series S(x) = Z a,(x — a)" centered at «, there is a unique
n=0
0<R<+wS.t |x—a]<R = Sx)ACV and |x—a|>R = S(kx) DV

® Interval of CV: (@ — R,a+ R) Of [a — R,a + R) Of (@ — R, + R] Of [a@ — R, & + R].

+0o0 +oo +o0
O D ax-a)+) bx—a) =) (a+b)x—-a) When |x—a| <mMin(R,, R,)
n=0 n=0 =0

0 A Z a,(x—a)' = Z(/\an)(x —a)"
n=0 n=0

x too +00
a
Sisc’on(a¢-R,a+R) and 2 t— "d’=z " (x — o)t
9 (a a ) i nzoa"( a) n:0n+1(x a)

O s is differentiable on (a — R.a + R) and $’(x) = Y. na,(x — a)"!

n=1
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Recap 1: Power series

+o0

© Given a power series S(x) = Z a,(x — a)" centered at «, there is a unique
n=0
0<KR<+wS.t |x—a|]<R = Sx)ACV and |x—a|>R = S(kx) DV
(R is called the radius of convergence of S)

® Interval of CV: (@ — R,a+ R) Of [a — R,a+ R) Of (@ — R, + R] Of [a@ — R, & + R].

+o0
(3] Za (x—a) + Zb (x—a)" = Y (a,+b,)(x—a)" when |x—a| <min(R,, Ry)
n=0 n=0
(Remark: R, = mln(RA, Rp)when R, # Ry Or R,,, > min(R,, R,) otherwise)

+o0 +o0
(4 ) 2 a,(x —a)' = Z(Aa,,)(x —a)" (same radius of convergence for A #0).
n=0 n=0
x +oo +oo

0 _ n n+l b — n
O sisc’on@- Ra+R)and/az_:a(r a)y'dt = 2 —aytt= Y - a)

n=1
(with same radius of convergence).

O s is differentiable on (a — R.a + R) and '(x) = Y na,(x - @)™ = ¥ (1 + Da,,, (x - a)'

n=1
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Recap 2: Taylor polynomials and Taylor series

@ Let f : I - R be a function defined on an interval I and a an interior
point of I. Assume that f is n times differentiable at a.
We define its Taylor polynomial of order n at a as

n )
Px) =) S @ (x—a)

@ Notice that P, is the unique polynomial of degree at most » such that

5 S (x) = P,(x)
im—— =
x—a (x —a)

© Notice that P, is the unique polynomial of degree at most » such that

P,(a) = f(a), P!(a)= f'(a), P/(a) = f"(a), ..., P"(a) = f"(a)

O Let f : I - R afunction defined on an interval I and a an interior point
of I. Assume that f is C* at a then we define its Taylor series at a as

*)
T()_Zf ()( _ o)
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Recap 3: analytic functions

@ Let I be an interval and a be an interior point of 1. We say that a C*®
function f : I — R is analytic at a if there exists r > 0 such that

[x—a|l <r = f(x)=T,(x)

@ How can a C* function not be analytic?
a. The radius of convergence of T,(x) is 0, or,
b. The radius of convergence is > 0 but f(x) # T,(x) for x close to a.
@ If around a a function is equal to a power series centered at a, then the
latter is the Taylor series of the function at a.
There is no other possibility and you can identify the coefficients.

+oo
So if you can prove that f(x) = Z a,(x — a)* when x is close to a then
k=0
AC

you know that q, = o

That's what we used last week on Wednesday to compute the n-th
derivatives in slides 5 and 6.
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Recap 3: analytic functions

@ Let I be an interval and a be an interior point of 1. We say that a C*®
function f : I — R is analytic at a if there exists r > 0 such that

[x—a|l <r = f(x)=T,(x)

@ How can a C* function not be analytic?
a. The radius of convergence of T,(x) is 0, or,
b. The radius of convergence is > 0 but f(x) # T,(x) for x close to a.
@ If around a a function is equal to a power series centered at a, then the
latter is the Taylor series of the function at a.
There is no other possibility and you can identify the coefficients.
O Taylor’s theorem with Lagrange remainder.
Let f be (n + 1) times differentiable on an interval I and a € I then

¢ e(a,x) ifa<x
VxEI\{a},{ Y¥ea fa>x , such that

fox )—2(x )+ (( — L poengg)

@ Beware: ¢ depends on n, x, a.
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Recap 4: ex. of application of Lagrange’s remainder’
Letf: I —>RbeC™. Ifthereexist M >0and J,=(a—r,a+r)CISs.t.

VneN,V¥x e J, |fPx)| <M
then f is analytic at a.

Proof. Letx € J,. Letn e N.
By Taylor’s theorem with Lagrange remainder, there exists ¢ € J, such that

(x (k) (x —a)"™" (n+1) (x - a)n+l
fx) - 2 . Sl ()‘ ‘ r—— g (5)‘ T
a)n+1
—1)' is convergent.
n+1
Hence lim | & =9 | _

n—>+00

(n+ DY

SoVx € J,, f(x)= 2 (x C= 0" g,

'That's exactly the method we used last Wednesday for Slide 3.
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Recap 5: some results to know

+00 n
OvxeR e =)= (recall that 0! = 1)
=0 n!
1 1
O Vx € R, cos(x) = Z - ) and sin(x) = Z (=" X2l

@m!” ¢ (2n+ o

( 1)n+1

© Vxe(-1,1], In(l +x) = Z

1
Vxe(=1,1), —— = Y x"
Ovxe(-LD) — ’Z:,)x

+o0
e‘v’xe(—l,l), (1+x)a=1+za(a—l)...(a_n+1)xn

(The last one holds for x € R when a € N.)

n!

Keep in mind that power series behave well with respect to the usual
operations: use them to reduce to the above results.
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Greek alphabet (or “spaghetti”?)

A «a Alpha I . lota P po Rho

B p Beta K « Kappa ¥ o¢ Sigma
r y Gamma | A A Lambda | T = Tau

A 6 Delta M u Mu Y o Upsilon
E e¢e Epsilon | N v Nu ® ¢ Phi

7 ¢ Zeta 2 ¢ Xi X x Chi

H 7# Eta O o Omicron | ¥ Psi

® 09 Theta N 7w Pi Q Omega
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Taylor series gymnastics

Write the following functions as power series
centered at 0.

First by using the sigma notation, and then by
writing out the first few terms.

x2 _ 1+x
of(x)=1+x ef(x)—lnl_)1C
0 /(x) = (& 0 /= ha-

© f(x) = sin (2x°)

— * 2
O f(x) =cos’x 0 f(x)= /0 cos(t)dt
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Other operations with Taylor series

Obtain the terms of degree less than or equal
to 4 of the Maclaurin series of these functions:

O f(x)=ersinx
@ g(x) = ™

Hint: Treat the power series the same way you
would treat a polynomial.
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Other operations with Taylor series

Obtain the terms of degree less than or equal
to 4 of the Maclaurin series of these functions:

O f(x)=ersinx
@ g(x) = ™

Hint: Treat the power series the same way you
would treat a polynomial.

Follow-up questions:
Compute g®(0) and g¥(0).
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