MAT137Y1 – LEC0501 *Calculus!*

ANALYTIC FUNCTIONS

March 27th, 2019

For next week

For Monday (Apr 1), watch the videos:

• Applications: 14.12, 14.14

For Wednesday (Apr 3), watch the videos:

Applications: 14.11, 14.13, 14.15

cos is analytic

1 Recall Taylor's theorem with Lagrange remainder.

- 2 Prove that $\cos^{(k)}(x) = \cos\left(x + k\frac{\pi}{2}\right)$
- 3 Prove that

$$\forall x \in \mathbb{R}, \cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

cos is analytic

Recall Taylor's theorem with Lagrange remainder.

Let f be (n+1) times differentiable on an interval I and $a \in I$ then $\forall x \in I \setminus \{a\}, \left\{ \begin{array}{ll} \exists \xi \in (a,x) & \text{if } a < x \\ \exists \xi \in (x,a) & \text{if } a > x \end{array} \right.$, such that

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

- 2 Prove that $\cos^{(k)}(x) = \cos\left(x + k\frac{\pi}{2}\right)$
- 3 Prove that

$$\forall x \in \mathbb{R}, \cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

The binomial series

Let $\alpha \in \mathbb{R}$. Let $f(x) = (1 + x)^{\alpha}$.

- Find a formula for its derivatives $f^{(n)}(x)$.
- **2** Write its Maclaurin series at 0. Call it S(x).
- **3** What is special about this series when $\alpha \in \mathbb{N}$?
- **4** Now assume α ∉ \mathbb{N} . Find the radius of convergence of the series S(x).
- **⑤** One may prove that f(x) = S(x) for $x \in (-1, 1)$. (It is easier to use another remainder theorem or a method involving ODE rather than with Lagrange remainder, so we skip it)

The binomial series

Let $\alpha \in \mathbb{R}$. Let $f(x) = (1 + x)^{\alpha}$.

- Find a formula for its derivatives $f^{(n)}(x)$.
- **2** Write its Maclaurin series at 0. Call it S(x).
- **3** What is special about this series when $\alpha \in \mathbb{N}$?
- **4** Now assume α ∉ \mathbb{N} . Find the radius of convergence of the series S(x).
- **⑤** One may prove that f(x) = S(x) for x ∈ (-1,1). (It is easier to use another remainder theorem or a method involving ODE rather than with Lagrange remainder, so we skip it)

arcsin

1 Use the binomial series to write

$$g(x) = \frac{1}{\sqrt{1 - x^2}}$$

as a power series centered at 0.

Write

$$h(x) = \arcsin x$$

as a power series centered at 0. *Hint:* Compute h'(x).

3 Deduce from the above a formula for $h^{(N)}(0)$.

arcsin

Use the binomial series to write

$$g(x) = \frac{1}{\sqrt{1 - x^2}}$$

as a power series centered at 0.

Write

$$h(x) = \arcsin x$$

as a power series centered at 0. *Hint:* Compute h'(x).

3 Deduce from the above a formula for $h^{(N)}(0)$.

arctan

Write the function

$$f(x) = \arctan x$$

as a power series centered at 0.

Hint: Compute the first derivative.

- **2** What is $f^{(203)}(0)$?
- **3** What is $f^{(42)}(0)$?

arctan

Write the function

$$f(x) = \arctan x$$

as a power series centered at 0.

Hint: Compute the first derivative.

- **2** What is $f^{(203)}(0)$?
- **3** What is $f^{(42)}(0)$?