

\cos is analytic

1 Recall Taylor's theorem with Lagrange remainder.

Let f be (n + 1) times differentiable on an interval I and $a \in I$ then $\forall x \in I \setminus \{a\}, \begin{cases} \exists \xi \in (a, x) & \text{if } a < x \\ \exists \xi \in (x, a) & \text{if } a > x \end{cases}$, such that

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

2 Prove that
$$\cos^{(k)}(x) = \cos\left(x + k\frac{\pi}{2}\right)$$

O Prove that

$$\forall x \in \mathbb{R}, \cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

The binomial series

- Let $\alpha \in \mathbb{R}$. Let $f(x) = (1 + x)^{\alpha}$.
- **1** Find a formula for its derivatives $f^{(n)}(x)$.
- **2** Write its Maclaurin series at 0. Call it S(x).
- **3** What is special about this series when $\alpha \in \mathbb{N}$?
- Only Now assume α ∉ ℕ. Find the radius of convergence of the series S(x).
- G One may prove that f(x) = S(x) for $x \in (-1, 1)$. (It is easier to use another remainder theorem or a method involving ODE rather than with Lagrange remainder, so we skip it)

1 Use the binomial series to write

$$g(x) = \frac{1}{\sqrt{1 - x^2}}$$

as a power series centered at 0.

Write

 $h(x) = \arcsin x$

as a power series centered at 0. *Hint:* Compute h'(x).

3 Deduce from the above a formula for $h^{(N)}(0)$.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Mar 27, 2019 5

arctan

Write the function

 $f(x) = \arctan x$

as a power series centered at 0.

Hint: Compute the first derivative.

What is f⁽²⁰³⁾(0)?
What is f⁽⁴²⁾(0)?

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Mar 27, 2019 6