MAT137Y1 – LEC0501 *Calculus!*

March 18th, 2019

For Wednesday (Mar 20), watch the videos:

- Power series: 14.1, 14.2
- Taylor polynomials: 14.3, 14.4

Use Ratio test to decide which series are convergent:

1 $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ **3** $\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!}$ **3** $\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!}$ **4** $\sum_{n=2}^{\infty} \frac{n!}{n^n}$

Try to apply the ratio test to :

1
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
2
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
3
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Review: Convergent or Divergent?

$$\bullet \sum_{n=2}^{+\infty} \frac{\cos(n\pi)}{\ln n}$$

$$2\sum_{n=2}^{+\infty}\frac{\sin(n\pi)}{\ln n}$$

Review: Convergent or Divergent?

$$\bullet \sum_{n=2}^{+\infty} \frac{\cos(n\pi)}{\ln n}$$

$$2 \sum_{n=2}^{+\infty} \frac{\sin(n\pi)}{\ln n}$$

Conclusion: Think first, then compute!

For which $a, b \in \mathbb{R}$ is the following series convergent:

$$\sum_{n=2}^{+\infty} \frac{1}{n^a \ln(n)^b}$$

Convergent alternating series failing the AST *Homework*

Consider
$$S = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n + (-1)^n}.$$

• Why does *S* fail the AST? Hint: compare b_{2n} and b_{2n+1} .

2 Prove that *S* is nevertheless convergent! *Hint:* $\frac{(-1)^n}{n+(-1)^n} = \frac{(-1)^n}{n} + v_n$

Construct a series of the form $\sum_{n=1}^{\infty} (-1)^n b_n$ s.t.

•
$$\forall n \ge 1, b_n > 0$$

•
$$\lim_{n \to \infty} b_n = 0$$

• the series
$$\sum_{n=1}^{\infty} (-1)^n b_n$$
 is divergent.

Example of decision tree to study the convergence of $\sum a_n$

The two reference series

Quite often we apply the comparison tests with these two series that you MUST know!

Riemann series

$$\sum_{n=k}^{+\infty} \frac{1}{n^p}$$
 is convergent if and only if $p > 1$.

Proof: use the $\sum - \int$ comparison.

Geometric series

$$\sum_{n=k}^{+\infty} x^n \text{ is convergent if and only if } |x| < 1,$$

then
$$\sum_{n=k}^{+\infty} x^n = \frac{x^k}{1-x}.$$

Proof: use the geometric sum formula from last week.

Abel transformation (or Summation by parts)

Let
$$(a_n)_{n \ge p}$$
 and $(b_n)_{n \ge p}$ be two sequences.
We set, for $n \ge p$, $B_n = \sum_{k=p}^n b_k$.

1 Express b_n in terms of B_n . (you have to distinguish n = p and n > p)

Dirichlet's test - Homework

 Use an Abel transformation to prove the Dirichlet's test: Let (a_n)_{n≥p} and (b_n)_{n≥p} be two sequences. IF

1
$$(a_n)_n$$
 is monotonic

$$2 \lim_{n \to +\infty} a_n = 0, \text{ and},$$

3 the sequence of partial sums

$$\operatorname{s}\left(\sum_{k=p}^{n}b_{k}\right)_{n}$$
 is bounded

12

THEN
$$\sum_{n=p}^{+\infty} a_n b_n$$
 is convergent.

• *Hint:* $\lim_{q \to +\infty} a_q B_q = 0$ and the series $\sum_{n=p}^{+\infty} B_n(a_n - a_{n+1})$ is

absolutely convergent (hint: it is almost telescopic).

• Application: use this test to obtain a new proof of the AST.

Dirichlet's test - Homework

 Use an Abel transformation to prove the Dirichlet's test: Let (a_n)_{n≥p} and (b_n)_{n≥p} be two sequences. IF

1
$$(a_n)_n$$
 is monotonic

$$2 \lim_{n \to +\infty} a_n = 0, \text{ and},$$

the sequence of partial sums

$$s\left(\sum_{k=p}^{n}b_{k}\right)_{n}$$
 is bounded

12

THEN
$$\sum_{n=p}^{+\infty} a_n b_n$$
 is convergent.

• *Hint:* $\lim_{q \to +\infty} a_q B_q = 0$ and the series $\sum_{n=p}^{+\infty} B_n (a_n - a_{n+1})$ is

absolutely convergent (hint: it is almost telescopic).*Application:* use this test to obtain a new proof of the AST.

Dirichlet's test - Homework

 Use an Abel transformation to prove the Dirichlet's test: Let (a_n)_{n≥p} and (b_n)_{n≥p} be two sequences.
 IF

1
$$(a_n)_n$$
 is monotonic

$$2 \lim_{n \to +\infty} a_n = 0, \text{ and},$$

the sequence of partial sums

is
$$\left(\sum_{k=p}^{n} b_{k}\right)_{n}$$
 is bounded

12

THEN
$$\sum_{n=p}^{+\infty} a_n b_n$$
 is convergent.

• *Hint:* $\lim_{q \to +\infty} a_q B_q = 0$ and the series $\sum_{n=p}^{+\infty} B_n (a_n - a_{n+1})$ is

absolutely convergent (hint: it is almost telescopic).

Application: use this test to obtain a new proof of the AST.

A difficult series - Homework

We want to prove that $\sum_{n=1}^{+\infty} \frac{\sin n}{n}$ is convergent.

Prove that

$$2\sin(n)\sin\left(\frac{1}{2}\right) = \cos\left(n - \frac{1}{2}\right) - \cos\left(n + \frac{1}{2}\right)$$

O Use the above equality to compute

$$\sum_{n=1}^k \sin(n)$$

Onclude using the Dirichlet's test.