MAT137Y1 – LEC0501 *Calculus!*

RATIO TEST

March 18th, 2019

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Mar 18, 2019

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Mar 18, 2019

Ratio test: Convergent or divergent?

Use Ratio test to decide which series are convergent:

$$\mathbf{1} \sum_{n=1}^{\infty} \frac{3^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!}$$

$$\sum_{n=2}^{\infty} \frac{n!}{n^n}$$

For next lecture

For Wednesday (Mar 20), watch the videos:

• Power series: 14.1, 14.2

• Taylor polynomials: 14.3, 14.4

Ratio test

Try to apply the ratio test to:

$$\bullet \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

Review: Convergent or Divergent?

- $\mathbf{1} \sum_{n=2}^{+\infty} \frac{\cos(n\pi)}{\ln n}$
- $\sum_{n=2}^{+\infty} \frac{\sin(n\pi)}{\ln n}$

Conclusion: Think first, then compute!

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Mar 18, 2019

. .

Review: Bertrand series

For which $a, b \in \mathbb{R}$ is the following series convergent:

$$\sum_{n=2}^{+\infty} \frac{1}{n^a \ln(n)^b}$$

Jean-Baptiste Campesat

MAT137Y1 - LEC0501 - Calculus! - Mar 18, 2019

Convergent alternating series failing the AST Homework

Consider
$$S = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n + (-1)^n}$$
.

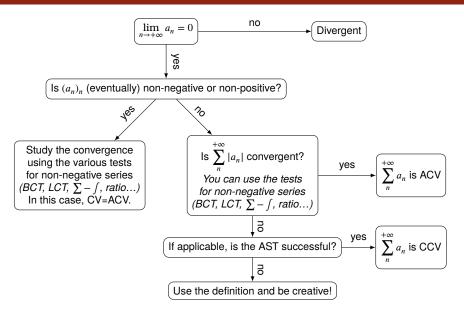
- Why does S fail the AST? Hint: compare b_{2n} and b_{2n+1} .
- 2 Prove that *S* is nevertheless convergent! Hint: $\frac{(-1)^n}{n+(-1)^n} = \frac{(-1)^n}{n} + v_n$

AST – Homework

Construct a series of the form $\sum_{n=1}^{\infty} (-1)^n b_n$ s.t.

- $\forall n \geq 1, b_n > 0$
- $\bullet \lim_{n\to\infty} b_n = 0$
- the series $\sum_{n=1}^{\infty} (-1)^n b_n$ is divergent.

Example of decision tree to study the convergence of $\sum a_n$



Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Mar 18, 2019

۵

Abel transformation (or Summation by parts)

Let $(a_n)_{n\geq p}$ and $(b_n)_{n\geq p}$ be two sequences.

We set, for
$$n \ge p$$
, $B_n = \sum_{k=p}^n b_k$.

- **1** Express b_n in terms of B_n . (you have to distinguish n = p and n > p)
- **2** Prove that $\sum_{n=p}^{q} a_n b_n = a_p B_p + \sum_{n=p+1}^{q} a_n (B_n B_{n-1}).$
- **3** Prove that $\sum_{n=p}^{q} a_n b_n = a_q B_q + \sum_{n=p}^{q-1} B_n (a_n a_{n+1}).$

This last equality is called "Abel transformation" or "Summation by parts".

The two reference series

Quite often we apply the comparison tests with these two series that you MUST know!

Riemann series

 $\sum_{n=k}^{+\infty} \frac{1}{n^p}$ is convergent if and only if p > 1.

Proof: use the $\sum -\int$ comparison.

Geometric series

 $\sum_{n=k}^{+\infty} x^n \text{ is convergent if and only if } |x| < 1,$

then
$$\sum_{n=k}^{+\infty} x^n = \frac{x^k}{1-x}.$$

Proof: use the geometric sum formula from last week.

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Mar 18, 2019

Dirichlet's test - Homework

- Use an Abel transformation to prove the Dirichlet's test: Let $(a_n)_{n\geq p}$ and $(b_n)_{n\geq p}$ be two sequences. IF
 - $(a_n)_n$ is monotonic,
 - $\lim_{n\to+\infty}a_n=0, \text{ and},$
 - 3 the sequence of partial sums $\left(\sum_{k=p}^{n} b_{k}\right)_{n}$ is bounded

THEN $\sum_{n=p}^{+\infty} a_n b_n$ is convergent.

• Hint: $\lim_{q \to +\infty} a_q B_q = 0$ and the series $\sum_{n=p}^{+\infty} B_n (a_n - a_{n+1})$ is

absolutely convergent (hint: it is almost telescopic).

• Application: use this test to obtain a new proof of the AST.

A difficult series - *Homework*

We want to prove that $\sum_{n=1}^{+\infty} \frac{\sin n}{n}$ is convergent.

Prove that

$$2\sin(n)\sin\left(\frac{1}{2}\right) = \cos\left(n - \frac{1}{2}\right) - \cos\left(n + \frac{1}{2}\right)$$

Use the above equality to compute

$$\sum_{n=1}^{k} \sin(n)$$

3 Conclude using the Dirichlet's test.