MAT137Y1 – LEC0501 *Calculus!*

INTEGRAL AND COMPARISON TESTS

March 11th, 2019

For Wednesday (Mar 13), watch the videos:

- Alternating series: 13.13, 13.14
- Absolute convergence: 13.15, (13.16), (13.17)

For which values of $p \in \mathbb{R}$ are these series convergent?

We know

•
$$\forall n \in \mathbb{N}, 0 < a_n < 1.$$

• the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

1)
$$\sum_{n=1}^{\infty} \sin a_n$$
 2) $\sum_{n=1}^{\infty} \cos a_n$ 3) $\sum_{n=1}^{\infty} \sqrt{a_n}$

Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

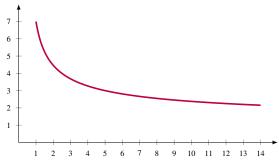
• Sketch the area
$$A_n = \int_1^{\infty} f(x) dx$$
.

- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?

Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

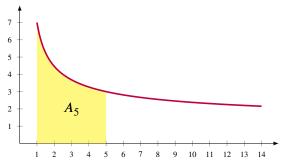
- **2** Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

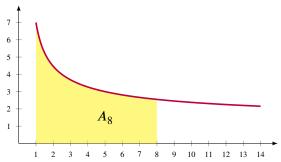
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

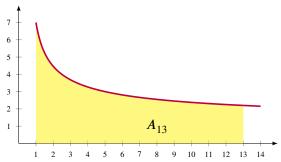
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

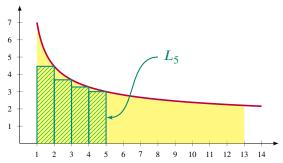
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

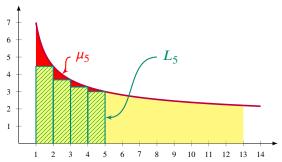
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

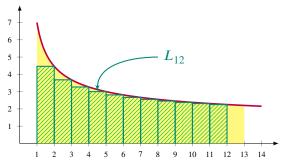
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

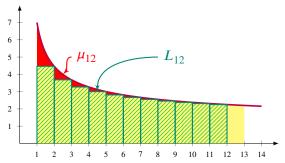
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

1 Sketch the area
$$A_n = \int_1^1 f(x) dx$$
.

- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?

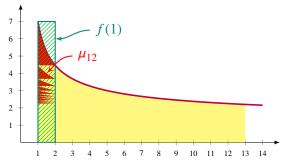


Homework: Prove question 3 formally!

Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

• Sketch the area
$$A_n = \int_1^n f(x) dx$$
.

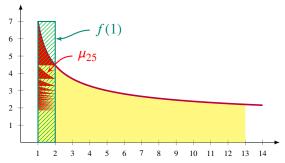
- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$.

• Sketch the area
$$A_n = \int_1^n f(x) dx$$
.

- 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
- **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?



- Let *f* be a non-negative, continuous, non-increasing function on $[1, \infty)$. **1** Sketch the area $A_n = \int_1^n f(x) dx$.
 - 2 Draw the lower sum for the partition $\{1, 2, 3, ..., n\}$. Call it L_n .
 - **3** Set $\mu_n = A_n L_n$. Explain graphically why the sequence $(\mu_n)_{n \ge 1}$ is monotonic and bounded. Therefore this sequence is also...?
 - 4 Use the above result on the function $f(x) = \frac{1}{x}$ to prove the following:

Theorem There exists a convergent sequence $(c_n)_{n=1}^{\infty}$

such that, for every
$$n \in \mathbb{N}$$
, $H_n := \sum_{k=1}^n \frac{1}{k} = \ln n + c_n$

6 In particular, this implies that $\lim_{n \to \infty} \frac{H_n}{\ln n} = 1$ and that, for large $n, H_n \approx \ln n + \gamma$, where $\gamma := \lim_{n \to \infty} c_n \simeq 0.5772156649...$ is the Euler-Mascheroni constant.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Mar 11, 2019