MAT137Y1 – LEC0501 *Calculus!*

PROPERTIES OF SERIES

March 6th, 2019

For next week

For Monday (Mar 11), watch the videos:

Integral and comparison tests: 13.10, 13.11, 13.12

For Wednesday (Mar 13), watch the videos:

- Alternating series: 13.13, 13.14
- Absolute convergence: 13.15, (13.16), (13.17)

<u>Comment:</u> I wrote some notes about slide 7 from last lecture.

http://www.math.toronto.edu/campesat/ens/1819/
lec39-notes.pdf

What is wrong with this calculation? Fix it

Claim:

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \ln 2$$

"Justification"

$$\sum_{n=2}^{\infty} \ln \frac{n}{n+1} = \sum_{n=2}^{\infty} \left[\ln n - \ln(n+1) \right]$$

$$= \sum_{n=2}^{\infty} \ln(n) - \sum_{n=2}^{\infty} \ln(n+1)$$

$$= (\ln 2 + \ln 3 + \ln 4 + \dots) - (\ln 3 + \ln 4 + \dots)$$

$$= \ln 2$$

Geometric sums

Prove the following claim.

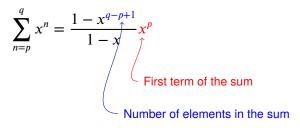
Let $x \in \mathbb{R} \setminus \{1\}$ then

$$\sum_{n=p}^{q} x^{n} = \frac{1 - x^{q-p+1}}{1 - x} x^{p}$$

Geometric sums

Prove the following claim.

Let $x \in \mathbb{R} \setminus \{1\}$ then



Geometric series

Compute the value of the following series:

1
$$S_1 = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots$$

2
$$S_2 = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \cdots$$

3
$$S_3 = \frac{3}{2} - \frac{9}{4} + \frac{27}{8} - \frac{81}{16} + \cdots$$

$$S_5 = \sum_{n=1}^{\infty} (-1)^n \frac{3^n}{2^{2n+1}}$$

$$S_6 = \sum_{n=1}^{\infty} x^n$$

Convergent or divergent?

$$\bullet \sum_{n=0}^{\infty} \frac{1}{2^n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}$$

$$\sum_{n=5}^{\infty} \frac{3^n}{2^{2n+1}}$$

6
$$\sum_{n=0}^{\infty} (-1)^n$$

Convergent or divergent?

$$\bullet \sum_{n=0}^{\infty} \frac{1}{2^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}$$

$$\sum_{n=5}^{\infty} \frac{3^n}{2^{2n+1}}$$

6
$$\sum_{n=0}^{\infty} (-1)^n$$

True or False - Series

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- **1** IF the series $\sum_{n=0}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $a_n > 100$
- 2 IF the series $\sum_{n=0}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $S_n > 100$
- 3 IF the series $\sum_{n=0}^{\infty} a_n$ converges

THEN the series $\sum_{n=100}^{\infty} a_n$ converges to a smaller number.

- 4 IF the series $\sum_{n=0}^{\infty} a_n$ converges
 - THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is eventually monotonic.

True or False - Series

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- **5** IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.
- **6** IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n > 0, a_n > 0$.
- 7 IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n \geq 0, \ a_n > 0$.

True or False - Series

- **3** IF $\lim_{n\to\infty} a_n = 0$, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.
- IF $\sum_{n} a_n$ is convergent THEN $\lim_{n \to \infty} a_n = 0$.
- **1** IF $\sum_{n\to\infty} a_n$ is divergent THEN $\lim_{n\to\infty} a_n \neq 0$.

Proving a property about series from the definition

Let
$$\sum_{n=0}^{\infty} a_n$$
 be a series and $c \in \mathbb{R}$.

Prove that

IF
$$\sum_{n=0}^{\infty} a_n$$
 is convergent,

THEN
$$\sum_{n=0}^{\infty}(ca_n)$$
 is also convergent and $\sum_{n=0}^{\infty}(ca_n)=c\left(\sum_{n=0}^{\infty}a_n\right)$.

ls 0.999999... = 1?

First, we need to fix the meaning of 0.999999....

- ① Write the number 0.99999999... as a series Hint: 427 = 400 + 20 + 7.
- 2 Compute the first few partial sums
- Add up the series.
 Hint: it is geometric.

ls 0.999999... = 1?

First, we need to fix the meaning of 0.999999....

- Write the number 0.99999999... as a series Hint: 427 = 400 + 20 + 7.
- 2 Compute the first few partial sums
- Add up the series.
 Hint: it is geometric.

ls 0.999999... = 1?

First, we need to fix the meaning of 0.999999....

- **1** Write the number 0.99999999... as a series *Hint:* 427 = 400 + 20 + 7.
- Compute the first few partial sums
- Add up the series. Hint: it is geometric.

Are all decimal expansions well-defined?

The decimal expansion of a number is a series:

$$0.a_1a_2a_3a_4a_5... = \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{1000} + \cdots$$

for any "digits" a_1 , a_2 , a_3 , ...

Are such series always convergent, no matter which infinite string of digits we choose?

Yes! Prove it.

(Hint: all the terms in the series are positive.)

Challenge

We want to calculate the value of

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)\,3^n}$$

Hints:

- **2** Compute $\frac{d}{dx} [\arctan x]$
- Oretend you can take derivatives and antiderivatives of series the way you can take them of sums. Which series adds up to arctan x?
- 4 Now attempt the original problem.

A more difficult challenge - part 1 Homework, not mandatory

Let $x \in (0, 1)$. Then, there exists a unique sequence $(a_n)_{n \ge 1}$ of digits not eventually constant to 9 such that $x = 0.a_1a_2a_3...$ We want to prove that x is rational if and only if the sequence $(a_n)_n$ is eventually periodic, i.e.

$$\exists n_0 \ge 1, \ \exists p \ge 1, \ \forall n \ge 1, \ \left(n \ge n_0 \implies a_{n+p} = a_n\right)$$

1 Prove that if the sequence $(a_n)_n$ is eventually periodic then

$$x = r + \frac{y}{10^{n_0}} \sum_{l=0}^{+\infty} 10^{-lp}$$

where
$$y=a_{n_0}+\frac{a_{n_0+1}}{10}+\cdots+\frac{a_{n_0+p-1}}{10^{p-1}}$$
 and $r\in\mathbb{R}$. Conclude that $x\in\mathbb{Q}$.

A more difficult challenge - part 2 Homework, not mandatory

- **2** Conversely, we now assume that $x = \frac{a}{b}$.
 - 1 Prove there exist 0 < s < t such that the divisions of $10^s a$ and $10^t a$ by b have the same remainder.
 - 2 We denote by $(b_n)_{n\geq 1}$ and $(c_n)_{n\geq 1}$ the digits of the fractional parts of $\frac{10^ia}{b}$ and $\frac{10^ia}{b}$. Express b_n and c_n in terms of a_n .
 - 3 Prove that $\frac{10^s a}{b} \frac{10^t a}{b} \in \mathbb{Z}$.
 - 4 Using the above question, find a relation between b_n and c_n .
 - **5** Conclude that $(a_n)_n$ is eventually periodic.