University of Toronto – MAT137Y1 – LEC0501 *Calculus!* Notes about slide 7

Jean-Baptiste Campesato

March 4th, 2019

For each $n \in \mathbb{N}_{>0}$, we define

 r_n = the smallest power of 2 that is greater than or equal to n

Consider the series $S = \sum_{n=1}^{\infty} \frac{1}{r_n}$.

1. Compute r_1 through r_8 .

 $r_1 = 1, r_2 = 2, r_3 = 4, r_4 = 4, r_5 = 8, r_6 = 8, r_7 = 8, r_8 = 8.$

2. Compute the partial sums S_1 , S_2 , S_4 , S_8 of the series S.

$$S_{1} = \sum_{n=1}^{1} \frac{1}{r_{n}} = \frac{1}{r_{1}} = 1$$

$$S_{2} = \sum_{n=1}^{2} \frac{1}{r_{n}} = \frac{1}{r_{1}} + \frac{1}{r_{2}} = 1 + \frac{1}{2} = \frac{3}{2}$$

$$S_{4} = \sum_{n=1}^{4} \frac{1}{r_{n}} = \sum_{n=1}^{2} \frac{1}{r_{n}} + \sum_{n=3}^{4} \frac{1}{r_{n}} = S_{2} + \frac{1}{r_{3}} + \frac{1}{r_{4}} = S_{2} + \frac{1}{4} + \frac{1}{4} = S_{2} + \frac{1}{2} = \frac{3}{2} + \frac{1}{2} = 2$$

$$S_{8} = \sum_{n=1}^{8} \frac{1}{r_{n}} = \sum_{n=1}^{4} \frac{1}{r_{n}} + \sum_{n=5}^{8} \frac{1}{r_{n}} = S_{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = S_{4} + \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2}$$

It seems that $S_{2^{k+1}} = S_{2^k} + \frac{1}{2}$, allowing us to conjecture that

$$\forall k \in \mathbb{N}, \, S_{2^k} = 1 + \frac{k}{2}$$

The above claim is true and will be useful for the next question, so let's prove it by induction.

Base case, for k = 0: $S_{2^0} = S_1 = 1 = 1 + \frac{0}{2}$.

Induction step:

We assume that $S_{2^k} = 1 + \frac{k}{2}$ for some $k \in \mathbb{N}$ and we want to show that $S_{2^{k+1}} = 1 + \frac{k+1}{2}$. First, notice that

$$S_{2^{k+1}} = \sum_{n=1}^{2^{k+1}} \frac{1}{r_n} = \sum_{n=1}^{2^k} \frac{1}{r_n} + \sum_{n=2^{k+1}}^{2^{k+1}} \frac{1}{r_n} = S_{2^k} + \sum_{n=2^{k+1}}^{2^{k+1}} \frac{1}{r_n} = 1 + \frac{k}{2} + \sum_{n=2^{k+1}}^{2^{k+1}} \frac{1}{r_n}$$

where the last equality comes from the induction hypothesis.

Then, notice that the last sum has $(2^{k+1}) - (2^k + 1) + 1 = 2^{k+1} - 2^k = 2^k(2-1) = 2^k$ terms and moreover, for all $n = 2^k + 1, 2^k + 2, ..., 2^{k+1}$, we have $2^k < n \le 2^{k+1}$, hence $r_n = 2^{k+1}$. Therefore

$$S_{2^{k+1}} = 1 + \frac{k}{2} + 2^k \frac{1}{2^{k+1}} = 1 + \frac{k}{2} + \frac{1}{2} = 1 + \frac{k+1}{2}$$

3. Compute $S = \sum_{n=1}^{\infty} \frac{1}{r_n}$.

We denote the *k*-th partial sum of *S* by $S_k = \sum_{n=1}^{k} \frac{1}{r_n}$.

Let $k \in \mathbb{N}_{>0}$, then

$$S_{k+1} = \sum_{n=1}^{k+1} \frac{1}{r_n} = \left(\sum_{n=1}^k \frac{1}{r_n}\right) + \frac{1}{r_{k+1}} = S_k + \frac{1}{r_{k+1}} > S_k$$

Hence the sequence $(S_k)_{k \ge 1}$ is increasing.

Therefore, either it is bounded from above and then convergent or it is not bounded from above and then it is divergent to $+\infty$.

But we know that $\lim_{k \to +\infty} S_{2^k} = \lim_{k \to +\infty} \left(1 + \frac{k}{2}\right) = +\infty$.

So $(S_k)_k$ is not bounded from above: for any $M \in \mathbb{R}$, there exists $l \in \mathbb{N}$ such that $S_k > M$ with $k = 2^l$.

Hence, since $(S_k)_k$ is increasing and not bounded from above, we get that $\lim_{k \to +\infty} S_k = +\infty$.

We proved that
$$\sum_{n=1}^{\infty} \frac{1}{r_n} = +\infty$$
.

4. Compute $H = \sum_{n=1}^{\infty} \frac{1}{n}$. *Hint:* "Compare" *H* and *S*.

By definition of r_n , we know that, for any $n \in \mathbb{N}_{>0}$, we have $r_n \ge n > 0$ and therefore $\frac{1}{r_n} \le \frac{1}{n}$. Hence, for any $k \in \mathbb{N}_{>0}$, we have $\sum_{n=1}^{k} \frac{1}{r_n} \le \sum_{n=1}^{k} \frac{1}{n}$. Since $\lim_{k \to +\infty} \sum_{n=1}^{k} \frac{1}{r_n} = +\infty$, we get by comparison that $\lim_{k \to +\infty} \sum_{n=1}^{k} \frac{1}{n} = +\infty$. We proved that $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$.