University of Toronto – MAT137Y1 – LEC0501 *Calculus!* Notes about today's lecture

Jean-Baptiste Campesato

February 27th, 2019

1 Definitions of improper integrals

Definition 1.1. Let $f : [a, +\infty) \to \mathbb{R}$ be a function which is integrable on each subinterval $[a, c] \subset [a, +\infty)$ (for instance continuous), then we set

$$\int_{a}^{+\infty} f(x)dx := \lim_{c \to +\infty} \int_{a}^{c} f(x)dx$$

whenever it makes sense.

Definition 1.2. Let $f : (-\infty, b] \to \mathbb{R}$ be a function which is integrable on each subinterval $[c, b] \subset (-\infty, b]$ (for instance continuous), then we set

$$\int_{-\infty}^{b} f(x)dx := \lim_{c \to -\infty} \int_{c}^{b} f(x)dx$$

whenever it makes sense.

Definition 1.3. Let $f : [a, b) \to \mathbb{R}$ be a function which is integrable on each subinterval $[a, c] \subset [a, b)$ (for instance continuous), then we set

$$\int_{a}^{b} f(x)dx := \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx$$

whenever it makes sense.

Definition 1.4. Let $f : (a, b] \rightarrow \mathbb{R}$ be a function which is integrable on each subinterval $[c, b] \subset (a, b]$ (for instance continuous), then we set

$$\int_{a}^{b} f(x)dx := \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx$$

whenever it makes sense.

Definition 1.5. Let $f : (a, b) \to \mathbb{R}$ be a function which is integrable on each subinterval $[c, d] \subset (a, b)$ where $a \in \mathbb{R}$ or $a = -\infty$ and $b \in \mathbb{R}$ or $b + \infty$ (for instance *f* is continuous).

We say that $\int_a^b f(x)dx$ is convergent if there exists $c \in (a, b)$ such that the improper integrals $\int_a^c f(x)dx$ of $f : (a, c] \to \mathbb{R}$ and $\int_c^b f(x)dx$ of $f : [c, b] \to \mathbb{R}$ are both convergent and then we set

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Remark 1.6. In the above definition, you need to study the two bounds separately! Moreover, if $\int_a^b f(x)dx$ is convergent then it is for any $c \in (a, b)$ and its value doesn't depend on the choice of c.

2 Slide 8: the MCT for functions

Theorem 2.1. Let $F : [a, b) \to \mathbb{R}$ be a function where either $b \in \mathbb{R}_{>a}$ or $b = +\infty$. If F is non-decreasing and bounded from above then $\lim_{x\to b^-} F(x)$ exists (moreover this limit is equal to $\sup\{F(x), x \in [a, b)\}$).

Proof. The set $S = \{F(x), x \in [a, b)\}$ is

- not empty since it contains *F*(*a*), and,
- bounded from above since *F* is.

Hence, by the "least upper bound principle", it admits a supremum $M = \sup(S)$, i.e. there exists $M \in \mathbb{R}$ satisfying

$$\left\{ \begin{array}{l} \forall x \in [a, b), \ F(x) \leq M \\ \forall \varepsilon > 0, \ \exists x_0 \in [a, b), \ M - \varepsilon < F(x_0) \end{array} \right.$$

We can prove that $\lim_{x \to b^-} F(x) = M$.

I am just doing the case where $b = +\infty$, the other case is quite similar (*do it as an exercise*). We want to show that $\lim_{x \to +\infty} F(x) = M$, i.e.

 $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in [a, +\infty), (x > A \implies |F(x) - M| < \varepsilon)$

- Let $\varepsilon > 0$.
- We know there exists $x_0 \in [a, +\infty)$ such that $M \varepsilon < F(x_0)$.
- We set $A = x_0$.
- Let $x \in [a, +\infty)$ satisfying x > A.
- Since *F* is non-decreasing, we know that $M \varepsilon < F(x_0) = F(A) \le F(x)$.
- Hence $M F(x) < \varepsilon$.
- But since *M* is an upper bound of *F*, we also have that $F(x) \leq M$.
- Therefore $0 \le M F(x) < \varepsilon$ which implies $|F(x) M| = |M F(x)| < \varepsilon$.
- We have well that $x > A \implies |F(x) M| < \varepsilon$.

Theorem 2.2. Let $F : [a, b) \to \mathbb{R}$ be a function where either $b \in \mathbb{R}_{>a}$ or $b = +\infty$. If *F* is non-decreasing and not bounded from above then $\lim_{x \to b^-} F(x) = +\infty$.

Proof. You can adapt the answer of the second question of the Problem Set 8.

3 The BCT and the LCT

Theorem 3.1 (The BCT). Let $f, g : [a, b) \to \mathbb{R}$ be two functions (either $b \in \mathbb{R}_{>a}$ or $b = +\infty$) such that

- (*i*) *f* and *g* are integrable on any subinterval $[a, c] \subset [a, b)$ (for instance they are continuous), and,
- (*ii*) $\forall x \in [a, b), 0 \le f(x) \le g(x)$.

Under the above assumptions, the following statements hold:

- 1. If $\int_a^b f(x) dx$ is divergent then $\int_a^b g(x) dx$ is divergent.
- 2. If $\int_a^b g(x)dx$ is convergent then $\int_a^b f(x)dx$ is convergent.

Proof.

For $x \in [a, b)$, set $F(x) = \int_a^x f(t)dt$ (which is well-defined since f is integrable on [a, x]), then F is non-decreasing: if $x_1 < x_2$ then $F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(t)dt \ge 0$.

Hence, according to the MCT, either *F* is bounded from above and then $\int_{a}^{b} f(t)dt = \lim_{x \to b^{-}} F(x)$ exists, or it is not bounded from above and the limit is $+\infty$. The same result holds for $G = \int_{a}^{x} g(t)dt$.

First case: assume that $\int_a^b f(x)dx$ is divergent. Since $f(x) \le g(x)$, we have $\int_a^x f(t)dt \le \int_a^x g(t)dt$. Since the limit of the LHS of the inequality is $+\infty$ (by the above remark), then the limit of the RHS is also $+\infty$.

Second case: assume that $\int_a^b g(x)dx$ is convergent. Therefore *G* is bounded from above by a number $M \in \mathbb{R}$. Hence, for any $x \in [a, b)$, $F(x) = \int_a^x f(t)dt \le \int_a^x g(t)dt = G(x) \le M$. Therefore F(x) is non-decreasing and admits an upper bound. \int_a^b

We deduce from the MCT that $\int_{a}^{b} f(x)dx = \lim_{x \to b^{-}} F(x)$ is convergent.

Exercise 3.2. Let $f, g : [a, b) \to \mathbb{R}$ be two functions (either $b \in \mathbb{R}_{>a}$ or $b = +\infty$) such that

- (*i*) f and g are integrable on any subinterval $[a, c] \subset [a, b)$, and,
- (*ii*) $\exists \alpha, \beta > 0, \forall x \in [a, b), 0 \le \alpha f(x) \le g(x) \le \beta f(x).$

Prove that $\int_a^b f(x) dx$ and $\int_a^b g(x) dx$ are either both convergent or both divergent.

Theorem 3.3 (The LCT). Let $f, g : [a, b) \to \mathbb{R}$ be two functions (either $b \in \mathbb{R}_{>a}$ or $b = +\infty$) such that (*i*) f and g are integrable on any subinterval $[a, c] \subset [a, b)$ (for instance they are continuous),

- (*ii*) $\forall x \in [a, b), f(x) \ge 0$,
- (*iii*) $\forall x \in [a, b), g(x) > 0, and, f(x)$

(iv)
$$\lim_{x \to b^-} \frac{f(x)}{g(x)} = \lambda > 0$$
 exists and is positive.

Then $\int_a^b f(x) dx$ and $\int_a^b g(x) dx$ are either both convergent or both divergent.

Proof. I'm explaining the case $b = +\infty$, the other case is exactly the same. By definition of the limit (applied to $\varepsilon = \frac{\lambda}{2}$), there exists a $M \in \mathbb{R}$ such that $\forall x \in [a, b)$,

$$x > M \implies \left| \frac{f(x)}{g(x)} - \lambda \right| < \frac{\lambda}{2}$$

We may rewrite the conclusion as

$$\lambda - \frac{\lambda}{2} < \frac{f(x)}{g(x)} < \lambda + \frac{\lambda}{2}$$

which implies that

$$0 < \frac{\lambda}{2}g(x) < f(x) < \frac{3\lambda}{2}g(x)$$

The end of the proof now derives from the above exercise.

Remark 3.4. The above results hold for improper integrals of functions of the form $f : (a, b] \rightarrow \mathbb{R}$ (i.e. when the integral is improper at the lower bound).

Indeed, if $0 \le f(x) \le g(x)$ on (a, b] then $F(x) = \int_x^b f(t)dt$ and $G(x) = \int_x^b g(t)dt$ are non-increasing. Therefore either *F* is bounded from above and $\lim_{x \to a^+} F(x)$ exists or $\lim_{x \to a^+} F(x) = +\infty$ (and the same result holds for *G*).

Hence the above proof works as it is.

Remark 3.5. Do not forget to check (and recall) the assumptions of the above theorems before using them!

Remark 3.6. Notice that $\int_a^b f(x)dx$ is convergent if and only if $\int_a^b -f(x)dx$ is. Hence, when you want to compare two functions that are both negative, you can multiply them by -1 and then apply the above results.

4 Slide 9: hints

(1) Notice that

$$\frac{\frac{x^3 + 2x + 7}{x^5 + 11x^4 + 1}}{\frac{1}{x^2}} = \frac{x^5 + 2x^3 + 7x^2}{x^5 + 11x^4 + 1} \xrightarrow[x \to +\infty]{} 1$$

(2) Notice that

$$\frac{\frac{1}{\sqrt{x^2 + x + 1}}}{\frac{1}{x}} = \frac{x}{\sqrt{x^2 + x + 1}} \xrightarrow[x \to +\infty]{x \to +\infty} 1$$

(3) Notice that

$$\frac{\frac{3\cos(x)}{x+\sqrt{x}}}{\frac{1}{\sqrt{x}}} = \frac{3\cos(x)}{\sqrt{x}+1} \xrightarrow[x\to 0^+]{3}$$

(4) Notice that

$$\frac{\cot(x)}{\frac{1}{x}} = \cos(x) \cdot \frac{x}{\sin(x)} \xrightarrow[x \to 0^+]{} 1$$

(5) Notice that

$$\frac{\frac{\sin(x)}{x^{3/2}}}{\frac{1}{\sqrt{x}}} = \frac{\sin(x)}{x} \xrightarrow[x \to 0^+]{} 1$$