MAT137Y1 – LEC0501 *Calculus!*

THEOREMS ABOUT SEQUENCES

February 13th, 2019

For Monday (Feb 25), watch the videos:

• Improper integrals: 12.1, (12.2), (12.3), 12.4, (12.5), (12.6)

For Wednesday (Feb 27), watch the videos:

• BCT and LCT for integrals: 12.7, 12.8, 12.9, 12.10

- If a sequence is convergent, then it is bounded from above.
- If a sequence is convergent, then it is eventually monotonic.
- **③** If a sequence diverges and is increasing, then there exists *n* ∈ \mathbb{N} such that $a_n > 100$.
- $If \lim_{n \to \infty} a_n = L, \text{ then } a_n < L + 1 \text{ for all } n.$
- If a sequence is non-decreasing and non-increasing, then it is convergent.
- If a sequence isn't decreasing and isn't increasing, then it is convergent.

Let *f* be a function with domain at least $[0, \infty)$. We define a sequence $(a_n)_{n \in \mathbb{N}}$ as $a_n = f(n)$. Let $L \in \mathbb{R}$.

1 IF
$$\lim_{x \to \infty} f(x) = L$$
, THEN $\lim_{n \to \infty} a_n = L$.

2 IF
$$\lim_{n \to \infty} a_n = L$$
, THEN $\lim_{x \to \infty} f(x) = L$.

3 IF
$$\lim_{n \to \infty} a_n = L$$
, THEN $\lim_{n \to \infty} a_{n+1} = L$.

Let *f* be a function with domain $[0, \infty)$. We define the sequence $(a_n)_{n\geq 0}$ by $a_n = f(n)$.

1 IF *f* is increasing, THEN $(a_n)_n$ is increasing.

2 IF $(a_n)_n$ is increasing, THEN *f* is increasing.

Beware: do not confuse sequences defined by

$$R_n = f(n)$$

(as in the two previous slides) and sequences defined by induction

$$R_{n+1} = f(R_n)$$

(as last Monday).

Compute

$$\lim_{n \to \infty} \frac{n! + 2e^n}{3n! + 4e^n}$$

$$2 \lim_{n \to \infty} \frac{2^n + (2n)^2}{2^{n+1} + n^2}$$

$$\lim_{n\to\infty}\frac{5n^5+5^n+5n!}{n^n}$$

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be positive sequences.

IF a_n << b_n, THEN ∀m ∈ N, a_m < b_m.
 IF a_n << b_n, THEN ∃m ∈ N s.t. a_m < b_m.
 IF a_n << b_n, THEN ∃n₀ ∈ N s.t. ∀m ∈ N, m ≥ n₀ ⇒ a_m < b_m.
 IF ∀m ∈ N, a_m < b_m, THEN a_n << b_n.
 IF ∃m ∈ N s.t. a_m < b_m, THEN a_n << b_n.
 IF ∃n₀ ∈ N s.t. ∀m ∈ N, m ≥ n₀ ⇒ a_m < b_m, THEN a_n << c_n.

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be positive sequences.

- 1 IF $a_n \ll b_n$, THEN $\forall m \in \mathbb{N}$, $a_m < b_m$. 2 IF $a_n \ll b_n$, THEN $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$. 3 IF $a_n \ll b_n$, THEN $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}$, $m \ge n_0 \implies a_m < b_m$. 4 IF $\forall m \in \mathbb{N}$, $a_m < b_m$, THEN $a_n \ll b_n$.
- **6** IF $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \ge n_0 \implies a_m < b_m$, THEN $a_n \ll b_n$.

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be positive sequences.

IF a_n << b_n, THEN ∀m ∈ N, a_m < b_m.
 IF a_n << b_n, THEN ∃m ∈ N s.t. a_m < b_m.
 IF a_n << b_n, THEN ∃m₀ ∈ N s.t. ∀m ∈ N, m ≥ n₀ ⇒ a_m < b_m.
 IF ∀m ∈ N, a_m < b_m, THEN a_n << b_n.
 IF ∃m ∈ N s.t. a_m < b_m, THEN a_n << b_n.
 IF ∃n₀ ∈ N s.t. ∀m ∈ N, m ≥ n₀ ⇒ a_m < b_m, THEN a_n << c_n.

Write a version of the Squeeze Theorem for convergent sequences.

Write a comparison theorem for sequences divergent to +∞.

Homework: prove them!

g

Write a version of the Squeeze Theorem for convergent sequences.

Write a comparison theorem for sequences divergent to +∞.

Homework: prove them!

g

Write a version of the Squeeze Theorem for convergent sequences.

Write a comparison theorem for sequences divergent to +∞.

Homework: prove them!

A sequence $(a_n)_{n \in \mathbb{N}}$ is called 2-increasing when $\forall n \in \mathbb{N}, \quad a_n < a_{n+2}.$

Construct a sequence that is 2-increasing but not increasing.

Prove that if a sequence of integers is convergent then it is eventually constant.

Composition law – Homework

Write a proof for the following Theorem

Theorem

Let
$$(a_n)_{n \in \mathbb{N}}$$
 be a sequence. Let $L \in \mathbb{R}$.
• IF $\begin{cases} \lim_{n \to +\infty} a_n = L \\ f \text{ is continuous at } L \end{cases}$
• THEN $\lim_{n \to +\infty} f(a_n) = f(L)$.

Prove, directly from the definition of limit, that

$$\lim_{n\to\infty}\frac{n^2}{n^2+1}=1.$$