

- 1 If a sequence is convergent, then it is bounded from above.
- If a sequence is convergent, then it is eventually monotonic.
- **③** If a sequence diverges and is increasing, then there exists *n* ∈ \mathbb{N} such that $a_n > 100$.
- (1) If $\lim_{n \to \infty} a_n = L$, then $a_n < L + 1$ for all n.
- If a sequence is non-decreasing and non-increasing, then it is convergent.
- If a sequence isn't decreasing and isn't increasing, then it is convergent.

Let *f* be a function with domain at least $[0, \infty)$. We define a sequence $(a_n)_{n \in \mathbb{N}}$ as $a_n = f(n)$. Let $L \in \mathbb{R}$.

- **1** IF $\lim_{x \to \infty} f(x) = L$, THEN $\lim_{n \to \infty} a_n = L$.
- **2** IF $\lim_{n \to \infty} a_n = L$, THEN $\lim_{x \to \infty} f(x) = L$.
- **3** IF $\lim_{n \to \infty} a_n = L$, THEN $\lim_{n \to \infty} a_{n+1} = L$.

Let *f* be a function with domain $[0, \infty)$. We define the sequence $(a_n)_{n>0}$ by $a_n = f(n)$.

1 IF *f* is increasing, THEN $(a_n)_n$ is increasing.

2 IF $(a_n)_n$ is increasing, THEN *f* is increasing.

Jean-Baptiste Campesato

MAT137Y1 – LEC0501 – Calculus! – Feb 13, 2019

Beware: do not confuse sequences defined by

 $R_n = f(n)$

(as in the two previous slides) and sequences defined by induction

$$R_{n+1} = f(R_n)$$

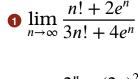
(as last Monday).

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Feb 13, 2019

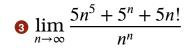
Big Theorem – True or False

Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be positive sequences.

- **1** IF $a_n \ll b_n$, THEN $\forall m \in \mathbb{N}, a_m < b_m$.
- **2** IF $a_n \ll b_n$, THEN $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$.
- $\textbf{3} \text{ IF } a_n << b_n, \text{ THEN } \exists n_0 \in \mathbb{N} \text{ s.t. } \forall m \in \mathbb{N}, \ m \ge n_0 \implies a_m < b_m.$
- **4** IF $\forall m \in \mathbb{N}$, $a_m < b_m$, THEN $a_n \ll b_n$.
- **(3)** IF $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$, THEN $a_n << b_n$.
- **6** IF $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \ge n_0 \implies a_m < b_m$, THEN $a_n \ll b_n$.



$$2 \lim_{n \to \infty} \frac{2^n + (2n)^2}{2^{n+1} + n^2}$$



- Write a version of the Squeeze Theorem for convergent sequences.
- Write a comparison theorem for sequences divergent to +∞.
- Homework: prove them!

A sequence $(a_n)_{n \in \mathbb{N}}$ is called *2-increasing* when

 $\forall n \in \mathbb{N}, \quad a_n < a_{n+2}.$

Construct a sequence that is 2-increasing but not increasing.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Feb 13, 2019 10

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Feb 13, 2019 9

Convergent sequence of integers – Homework

Prove that if a sequence of integers is convergent then it is eventually constant.

Composition law – Homework

Write a proof for the following Theorem

Theorem

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. Let $L \in \mathbb{R}$. • IF $\begin{cases} \lim_{n \to +\infty} a_n = L \\ f \text{ is continuous at } L \end{cases}$ • THEN $\lim_{n \to +\infty} f(a_n) = f(L)$. Prove, directly from the definition of limit, that

$$\lim_{n\to\infty}\frac{n^2}{n^2+1}=1.$$

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Feb 13, 2019 13