MAT137Y1 – LEC0501 *Calculus!*

SEQUENCES: DEFINITION AND FIRST PROPERTIES

February 11th, 2019

For Wednesday (Feb 13), watch the videos:

• Theorems about sequences: 11.5, 11.6, 11.7, 11.8

Write a formula for the general term of these sequences

$$(a_n)_{n\geq 1} = (1, 4, 9, 16, 25, ...)$$

$$(b_n)_{n\geq 1} = (1, -2, 4, -8, 16, -32, ...)$$

$$(c_n)_{n\geq 0} = (1, -2, 4, -8, 16, -32, ...)$$

$$(d_n)_{n\geq 1} = \left(\frac{2}{1!}, \frac{3}{2!}, \frac{4}{3!}, \frac{5}{4!}, ...\right)$$

$$(e_n)_{n\geq 0} = (1, 4, 7, 10, 13, ...)$$

Let $(a_n)_{n \ge K}$ be a sequence. Write the formal definition of the following notions:

$$\lim_{n \to +\infty} a_n = L$$

2 $(a_n)_n$ is convergent.

3 $(a_n)_n$ is divergent.

$$4 \lim_{n \to +\infty} a_n = +\infty$$

Definition of limit of a sequence

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. Let $L \in \mathbb{R}$. Which of these statements are equivalent to $\lim_{n \to +\infty} a_n = L$? 2 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n > n_0 \implies |L - a_n| < \varepsilon.$ **3** $\forall \varepsilon > 0, \exists n_0 \in \mathbb{R}, \forall n \in \mathbb{N}, n \ge n_0 \implies |L - a_n| < \varepsilon.$ **5** $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies |L - a_n| \le \varepsilon.$ **6** $\forall \varepsilon \in (0, 1), \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \forall n$ $n \ge n_0 \implies |L - a_n| < \varepsilon.$ $n \ge n_0 \implies |L - a_n| < \frac{1}{2}.$ 7 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \forall n$ $n \ge n_0 \implies |L - a_n| < \frac{1}{2}.$ **B** $\forall \varepsilon \in (0, 1), \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \exists n_0 \in \mathbb{N}, \forall n \in$ $n \ge n_0 \implies |L - a_n| < k$.

Consider the sequence $(R_n)_{n>0}$ defined by

$$\begin{cases} R_0 = 1 \\ \forall n \in N, \qquad R_{n+1} = \frac{R_n + 2}{R_n + 3} \end{cases}$$

Compute R_1 , R_2 , R_3 .

Is this proof correct?

Let $(R_n)_{n\geq 0}$ be the sequence in the previous slide.

Claim:

$$\lim_{n\to+\infty}R_n=-1+\sqrt{3}.$$

Proof.

• Let $L = \lim_{n \to \infty} R_n$. • $R_{n+1} = \frac{R_n + 2}{R_n + 3}$ • $\lim_{n \to \infty} R_{n+1} = \lim_{n \to \infty} \frac{R_n + 2}{R_n + 3}$ • $L = \frac{L+2}{L+3}$

- L(L+3) = L+2
- $L^2 + 2L 2 = 0$

•
$$L = -1 \pm \sqrt{3}$$

• L must be positive, so $L = -1 + \sqrt{3}$

Is this proof correct?

Let $(R_n)_{n\geq 0}$ be the sequence in the previous slide.

Claim:

$$\lim_{n \to +\infty} R_n = -1 + \sqrt{3}.$$

Proof.

• Let $L = \lim_{n \to \infty} R_n$. • $R_{n+1} = \frac{R_n + 2}{R_n + 3}$ • $\lim_{n \to \infty} R_{n+1} = \lim_{n \to \infty} \frac{R_n + 2}{R_n + 3}$ • $L = \frac{L+2}{L+3}$

- L(L+3) = L+2
- $L^2 + 2L 2 = 0$

•
$$L = -1 \pm \sqrt{3}$$

• *L* must be positive, so $L = -1 + \sqrt{3}$ Consider the sequence $(R_n)_{n\geq 0}$ defined by

$$\begin{cases} R_0 = 1 \\ \forall n \in N, \qquad R_{n+1} = \frac{R_n + 2}{R_n + 3} \end{cases}$$

- 1 Prove that $(R_n)_{n\geq 0}$ is bounded from below by 0.
- **2** Prove that $(R_n)_{n\geq 0}$ is decreasing.
- **3** Prove that $(R_n)_{n\geq 0}$ is convergent.
- 4 Conclude.