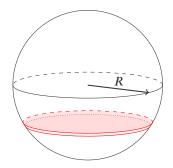
MAT137Y1 – LEC0501 *Calculus!*

Volumes - 1

February 4th, 2019

Jean-Baptiste Campesato


MAT137Y1 - LEC0501 - Calculus! - Feb 4, 2019

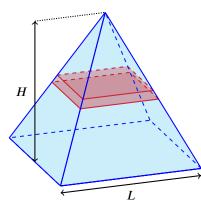
Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Feb 4, 2019

Volume and area of a sphere

Find the volume of a ball of radius *R* by slicing it.

For next lecture


For Wednesday (Feb 6), watch the videos:

• Volumes: 10.2

• Sequences: 11.1, 11.2

Volume of a pyramide – *Homework*

Find the volume of the right pyramid of height ${\cal H}$ and square base with side length ${\cal L}$ by slicing.

Many axis of rotation

Let R be the region in the first quadrant bounded between the curves with equations $y = x^3$ and $y = \sqrt{x}$.

Compute the volume of the solid of revolution obtained by rotating *R* around...

- $\mathbf{0}$... the *x*-axis
- 2 ... the *y*-axis
- **3** ... the line y = -1

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Feb 4, 2019

5

An equation for volumes by "slicing" – *Homework*

Let $f:[a,b]\to\mathbb{R}$ be a continuous positive function.

Let R be the region in the first quadrant enclosed between the graph of f and the x-axis.

Find a formula for the volume of the solid of revolution obtained by rotation the region R around the x-axis.

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Feb 4, 2019