MAT137Y1 – LEC0501 *Calculus!*

THE FUNDAMENTAL THEOREM OF CALCULUS Part 1

January 21st, 2019

1

For Wednesday (Jan 23), watch the videos:

- FTC 2: 8.5, 8.6, 8.7
- Integration by substitution: 9.1, (9.2), (9.3), (9.4)

2

True or False?

Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Assume that $\forall x \in \mathbb{R}$, f'(x) = g(x). Which of the following statements must be true?

1
$$f(x) = \int_0^x g(t)dt$$
.
2 If $f(0) = 0$, then $f(x) = \int_0^x g(t)dt$.
3 If $g(0) = 0$, then $f(x) = \int_0^x g(t)dt$.
4 There exists $C \in \mathbb{R}$ such that $f(x) = C + \int_0^x g(t)dt$.
5 There exists $C \in \mathbb{R}$ such that $f(x) = C + \int_1^x g(t)dt$.

3

True or False?

We want to find a function *H* with domain \mathbb{R} such that H(1) = -2 and such that $H'(x) = e^{\sin x}$ for all *x*.

Decide whether each of the following statements is true or false.

3 There is a $C \in \mathbb{R}$ such that $H(x) = \int_0^x e^{\sin t} dt + C$ is a solution.

4 The function $H(x) = \int_{1}^{x} e^{\sin t} dt - 2$ is a solution.

5 There is more than one solution.

Exercise

Let *f* be a continuous function with domain \mathbb{R} . Let *u*, *v* be differentiable functions with domain \mathbb{R} . Set

$$H(x) = \int_{u(x)}^{v(x)} f(t)dt$$

Justify that H is differentiable on \mathbb{R} and find a formula for

H'(x)

in terms of f, u, v, f', u', v'.

Assume f is a continuous function with domain \mathbb{R} that satisfies:

$$\forall x \in \mathbb{R}, \ \int_0^x e^t f(t) dt = \frac{\sin x}{x^2 + 1}$$

Find an explicit expression for f(x).