MAT137Y1 – LEC0501 *Calculus!*

THE FUNDAMENTAL THEOREM OF CALCULUS PART 1

January 21st, 2019

Jean-Baptiste Campesate

MAT137Y1 - LEC0501 - Calculus! - Jan 21, 2019

True or False?

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function.

Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function.

Assume that $\forall x \in \mathbb{R}, f'(x) = g(x)$.

Which of the following statements must be true?

2 If
$$f(0) = 0$$
, then $f(x) = \int_0^x g(t)dt$.

3 If
$$g(0) = 0$$
, then $f(x) = \int_0^x g(t)dt$.

4 There exists
$$C \in \mathbb{R}$$
 such that $f(x) = C + \int_0^x g(t)dt$.

5 There exists
$$C \in \mathbb{R}$$
 such that $f(x) = C + \int_1^x g(t)dt$.

For next lecture

For Wednesday (Jan 23), watch the videos:

- FTC 2: 8.5, 8.6, 8.7
- Integration by substitution: 9.1, (9.2), (9.3), (9.4)

Jean-Baptiste Campesat

MAT137Y1 - LEC0501 - Calculus! - Jan 21, 2019

_

True or False?

We want to find a function H with domain \mathbb{R} such that H(1) = -2 and such that $H'(x) = e^{\sin x}$ for all x.

Decide whether each of the following statements is true or false.

- 1 The function $H(x) = \int_0^x e^{\sin t} dt$ is a solution.
- 2 For any $C \in \mathbb{R}$, the function $H(x) = \int_0^x e^{\sin t} dt + C$ is a solution.
- **3** There is a $C \in \mathbb{R}$ such that $H(x) = \int_0^x e^{\sin t} dt + C$ is a solution.
- 4 The function $H(x) = \int_{1}^{x} e^{\sin t} dt 2$ is a solution.
- 5 There is more than one solution.

A generalized version of FTC-1

Exercise

Let f be a continuous function with domain \mathbb{R} . Let u, v be differentiable functions with domain \mathbb{R} . Set

$$H(x) = \int_{u(x)}^{v(x)} f(t)dt$$

Justify that H is differentiable on $\mathbb R$ and find a formula for

in terms of f, u, v, f', u', v'.

Assume f is a continuous function with domain \mathbb{R} that satisfies:

An integral equation

$$\forall x \in \mathbb{R}, \ \int_0^x e^t f(t) dt = \frac{\sin x}{x^2 + 1}$$

Find an explicit expression for f(x).