University of Toronto – MAT137Y1 – LEC0501 *Calculus!* Characterization of the sup/inf (slide 6)

Jean-Baptiste Campesato

January 9th, 2019

Recall the following definitions from the videos.

Definition 1. Let $A \subseteq \mathbb{R}$ and $U \in \mathbb{R}$. We say that *U* is an **upper bound** of *A* if

 $\forall x \in A, x \leq U$

Definition 2. Let $A \subseteq \mathbb{R}$ and $L \in \mathbb{R}$. We say that *L* is a **lower bound** of *A* if

 $\forall x \in A, \, L \leq x$

Definition 3. We say that a subset $A \subseteq \mathbb{R}$ is **bounded from above** if it admits an upper bound.

Definition 4. We say that a subset $A \subseteq \mathbb{R}$ is **bounded from below** if it admits a lower bound.

Definition 5. Let A ⊆ R and S ∈ R.
We say that S is the supremum (or least upper bound) of A if 1. S is an upper bound of A, and,
2. for all upper bounds T of A, S ≤ T.
Then we use the notation S = sup(A).

Definition 6. Let $A \subseteq \mathbb{R}$ and $I \in \mathbb{R}$. We say that *I* is the **infimum** (or **greatest lower bound**) of *A* if 1. *I* is a lower bound of *A*, and, 2. for all lower bounds *J* of *A*, $J \leq I$.

Then we use the notation $I = \inf(A)$.

Remark 7. Notice that we talk about **the** supremum of a set but about **an** upper bound of a set. It is because, as seen during the lecture (slide 4), if a set admits a supremum then it is unique. Beware, it is possible for a set to not have a supremum.

The real line \mathbb{R} satisfies two very fundamental properties.

Theorem 8 (The least upper bound property). *If a non-empty subset of* \mathbb{R} *is bounded from above then it admits a least upper bound (supremum).*

Theorem 9 (The greatest lower bound property). *If a non-empty subset of* \mathbb{R} *is bounded from below then it admits a greatest lower bound (infimum).*

Remark 10. As seen during the lecture (slide 5), the "non-empty" assumption is essential here!

We have seen the following characterizations of the supremum and of the infimum (slide 6). These characterizations may be useful when writing proofs: do not hesitate to use them!

Proposition 11. Let $A \subseteq \mathbb{R}$ and $S \in \mathbb{R}$. Then

$$S = \sup(A) \Leftrightarrow \begin{cases} \forall x \in A, \ x \le S \\ \forall \varepsilon > 0, \ \exists x \in A, \ S - \varepsilon < x \end{cases}$$

Proposition 12. *Let* $A \subseteq \mathbb{R}$ *and* $I \in \mathbb{R}$ *. Then*

$$I = \inf(A) \Leftrightarrow \begin{cases} \forall x \in A, \ I \le x \\ \forall \varepsilon > 0, \ \exists x \in A, \ x < I + \varepsilon \end{cases}$$

We will only focus on the characterization of the supremum (that's similar for the infimum). Notice that the first line simply means that *S* is an upper bound.

Then the second line of the characterization means that *S* is the smallest one!

Indeed, for any $\varepsilon > 0$, even a very very small one, $S - \varepsilon < S$. So the fact that S is the least upper bound means exactly that $S - \varepsilon$ isn't an upper bound, or, equivalently, that there is at least one $x \in A$ such that $S - \varepsilon < x$.

Beware, for simplicity I represented *A* as an interval in the above figure, but *A* may not be an interval!

Proof of proposition 11. Let $A \subseteq \mathbb{R}$ and $S \in \mathbb{R}$.

1. Proof of \Rightarrow . Assume that $S = \sup(A)$.

Then *S* is a upper bound of *A* so $\forall x \in A, x \leq S$.

We know that if *T* is an upper bound of *A* then $S \le T$. So, by taking the contrapositive, if T < S then *T* isn't an upper bound of *A*.

Let $\varepsilon > 0$. Since $S - \varepsilon < S$, we know that $S - \varepsilon$ is not an upper bound of A, meaning that there exists $x \in A$ such that $S - \varepsilon < x$.

2. Proof of \Leftarrow .

We assume that

$$\begin{cases} \forall x \in A, x \le S \\ \forall \varepsilon > 0, \exists x \in A, S - \varepsilon < x \end{cases}$$

The first part of the characterization ensures that *S* is an upper bound of *A*.

We still have to prove that if *T* is an upper bound of *A* then $S \le T$. We will show the contrapositive: if T < S then *T* isn't an upper bound. Let $T \in \mathbb{R}$. Assume that T < S. Let $\varepsilon = S - T > 0$. Then there exists $x \in A$ such that $S - \varepsilon < x$, i.e. T < x. Hence *T* isn't an upper bound.

Remark 13. If you prefer, you can write proofs by contradiction instead of using the contrapositive.