

Warm up: suprema and infima

Find the supremum, infimum, maximum, and minimum of the following sets (if they exist):

1
$$A = [-1, 5)$$

2 $B = (-\infty, \pi)$
3 $C = \{\sqrt{2}, e, \pi\}$
4 $D = \mathbb{N}$
5 $E = \left\{\frac{1}{n} : n \in \mathbb{Z}, n > 0\right\}$
6 $F = \left\{\frac{(-1)^n}{n} : n \in \mathbb{Z}, n > 0\right\}$
7 $G = \{2^n : n \in \mathbb{Z}\}$
8 $H = (0, 1] \cap \mathbb{Q}$

Unicity of the supremum

Prove the following fact:

Theorem

If a subset $A \subseteq \mathbb{R}$ admits a supremum, then it is unique.

Recall:

Let $A \subseteq \mathbb{R}$. Let $S \in \mathbb{R}$.

- *S* is an **upper bound** of *A* means $\forall x \in A, x \leq S$.
- S is the least upper bound (or supremum) of A means
 - S is an upper bound of A, and,
 - for all upper bounds T of A, $S \leq T$.

The same result holds for the infimum.

Empty set

- **1** Does \emptyset have an upper bound ?
- **2** Does \emptyset have a supremum?
- O Does Ø have a maximum?
- **4** Is \emptyset bounded from above?

Recall:

Let $A \subseteq \mathbb{R}$. Let $S \in \mathbb{R}$.

- *S* is an **upper bound** of *A* means $\forall x \in A, x \leq S$.
- *S* is the **least upper bound** (or **supremum**) of *A* means
 - *S* is an upper bound of *A*, and
 - for all upper bounds T of A, $S \leq T$.

The assumption that the set is non-empty is very important in the least upper bound principle!

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Jan 9, 2019

Infima and suprema exercises

Let $A, B \subseteq \mathbb{R}$.

Which of the following statements are true or false? If true, prove it. If false, find a counterexample.

- 1 If $B \subseteq A$ and A is bounded from above, then B is bounded from above.
- 2 If $B \subseteq A$ and B is bounded from above, then A is bounded from above.
- **3** If *A* and *B* each have a supremum and $B \subseteq A$, then $\sup B \leq \sup A$.
- ④ If *A* and *B* each have a supremum and sup $B \le \sup A$, then $B \subseteq A$.
- **6** If *A* and *B* each have a supremum, then $A \cup B$ has a supremum and $\sup(A \cup B) = \max\{\sup A, \sup B\}$.
- If A and B each have a supremum then A ∩ B has a supremum and sup(A ∩ B) = min{sup A, sup B}.
 What if moreover A ∩ B ≠ Ø? Fix the statement in this case.

Equivalent definition of the supremum

For $A \subseteq \mathbb{R}$ and $S \in \mathbb{R}$, recall:

Definition

We say that *S* is the supremum of *A*, denoted by $S = \sup(A)$, if it is the least upper bound of *A*.

Write a formal definition using quantifiers.

Hint 1: how many properties must satisfy the supremum of A?

Hint 2:

$$A \xrightarrow{\varepsilon} S \xrightarrow{\varepsilon} \mathbb{R}$$

Beware: the above drawing is quite helpful, but keep in mind that there are subsets of \mathbb{R} that are not intervals (there may be some "holes")!

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Jan 9, 2019 6

False statements

Let $a \leq b$ and $f, g : [a, b] \rightarrow \mathbb{R}$ be two bounded functions.

For each of the following statements, find a counter-example and then fix the statement:

1 Let f and g be bounded functions on [a, b]. Then

$$\sup_{\substack{\text{on } [a,b]}} \inf_{a,b} (f+g) = \sup_{\substack{\text{on } [a,b]}} \inf_{a,b} (f+g) + \inf_{a,b} (f+g)$$

2 Let *f* be a bounded function on [a, b]. Let $c \in \mathbb{R}$. Then:

$$\begin{array}{ll} \sup \ \mathrm{of} \ (cf) \\ \mathrm{on} \ [a,b] \end{array} \ = \ c \ \left(\begin{array}{l} \sup \ \mathrm{of} \ f \\ \mathrm{on} \ [a,b] \end{array} \right)$$

Let $f(x) = \cos x$.

Consider the partition $P = \{0, 1, 2, 4\}$ of [0, 4].

Compute the lower and upper Darboux sums of f with respect to P, i.e. $L_P(f)$ and $U_P(f)$.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Jan 9, 2019 9