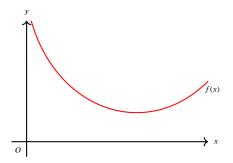
# MAT137Y1 – LEC0501 *Calculus!*

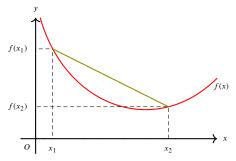
#### **CONCAVITY & ASYMPTOTES**



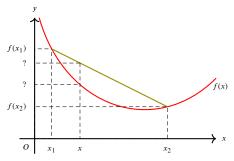
December 5th, 2018



You've seen in the video that  $f: I \to \mathbb{R}$  is concave up if the line segment between any two points on the graph of the function lies above or on the graph.



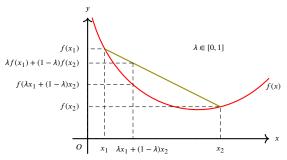
You've seen in the video that  $f: I \to \mathbb{R}$  is concave up if the line segment between any two points on the graph of the function lies above or on the graph.



You've seen in the video that  $f: I \to \mathbb{R}$  is concave up if the line segment between any two points on the graph of the function lies above or on the graph.



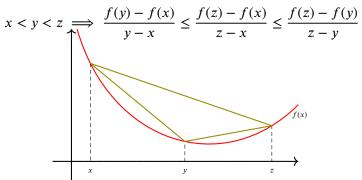
You've seen in the video that  $f: I \to \mathbb{R}$  is concave up if the line segment between any two points on the graph of the function lies above or on the graph.



#### The three chords lemma

Let  $f: I \to \mathbb{R}$  be a function defined on an interval I.

Prove that f is concave up on I if and only if  $\forall x, y, z \in I$ ,

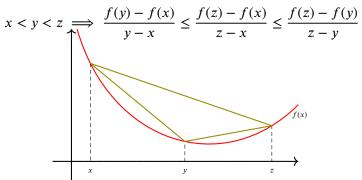


*Hint:* first rewrite each of these inequalities as  $f(y) \le \cdots$  and notice something that could simplify the question (and gives you a new definition for "f is concave up").

#### The three chords lemma

Let  $f: I \to \mathbb{R}$  be a function defined on an interval I.

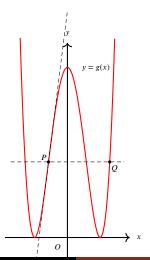
Prove that f is concave up on I if and only if  $\forall x, y, z \in I$ ,



**Corollary:** a concave up function  $f:(a,b)\to\mathbb{R}$  is continuous. **Warning:** the openness of the interval is important, see f defined on [0,1) by f(x)=0 on (0,1) and f(0)=1.

## Find the coordinates of P and Q

$$g(x) = x^4 - 6x^2 + 9$$



# Monotonicity and concavity

Let 
$$f(x) = xe^{-x^2/2}$$
.

- Find the intervals where f is increasing or decreasing, and its local extrema.
- Find the intervals where f is concave up or concave down, and its inflection points.
- **3** Calculate  $\lim_{x \to \infty} f(x)$  and  $\lim_{x \to -\infty} f(x)$ .
- $\bullet$  Using this information, sketch the graph of f.

# Unusual examples

## Construct a function *f* such that

- the domain of f is at least  $(0, \infty)$
- f is continuous and concave up on its domain
- $\bullet \lim_{x \to \infty} f(x) = -\infty$

## Construct a function g such that

- the domain of g is  $\mathbb{R}$
- g is continuous
- g has a local minimum at x = 0
- g has an inflection point at x = 0

# Some inequalities (not covered)

1 Jensen's inequality.

Let  $f:I\to\mathbb{R}$  be a concave up function defined on an interval I. Let  $x_1,\ldots,x_n\in I$ . Let  $\lambda_1,\ldots,\lambda_n\in[0,1]$  such that  $\lambda_1+\cdots+\lambda_n=1$ .

$$f\left(\sum_{k=1}^n \lambda_k x_k\right) \leq \sum_{k=1}^n \lambda_k f(x_k)$$

2 Application: **AM–GM inequality**. Let  $x_1, ..., x_n \in (0, +\infty)$ . Prove that

$$\left(x_1\cdots x_n\right)^{\frac{1}{n}} \leq \frac{x_1+\cdots+x_n}{n}$$

*Hint:* Study  $f(x) = -\ln(x)$ .

# A function with fractional exponents

Let 
$$h(x) = \frac{x^{2/3}}{(x-1)^{2/3}}$$
.

This function is infinitely differentiable on  $\mathbb{R} \setminus \{0,1\}$  and

$$h'(x) = \frac{-2}{3x^{1/3}(x-1)^{5/3}} \qquad h''(x) = \frac{2(6x-1)}{9x^{4/3}(x-1)^{8/3}}$$

- 1 Find all asymptotes of h
- 2 Study the monotonicity of h and local extrema
- 3 Study the concavity of h and inflection points
- 4 With this information, sketch the graph of h