MAT137Y1 – LEC0501 *Calculus!*

Монотонісіту

November 26th, 2018

For next lecture

For Wednesday (Nov 28), watch the videos:

Indeterminate forms and L'Hôpital's Rule: (6.3), 6.4, 6.5, (6.6), 6.7, 6.8, (6.9), 6.10

Inequalities

Prove that, for every $x \in \mathbb{R}$,

$$e^x \ge 1 + x$$

Hint: study the monotonicity of $f(x) = e^x - 1 - x$.

Intervals of monotonicity

Let
$$g(x) = x^3(x^2 - 11)^{1/3}$$
.

- What is the domain of definition of g?
- What is the domain of differentiability of g?
- \odot Study the monotonicity of g.
- Sketch the graph of g.

To save time, here is the first derivative:

$$g'(x) = \frac{11x^2(x^2 - 9)}{3(x^2 - 11)^{2/3}}$$

Intervals of monotonicity

Let
$$g(x) = x^3(x^2 - 11)^{1/3}$$
.

- What is the domain of definition of g?
- What is the domain of differentiability of g?
- \odot Study the monotonicity of g.
- Sketch the graph of g.

To save time, here is the first derivative:

$$g'(x) = \frac{11x^2(x^2 - 9)}{3(x^2 - 11)^{2/3}}$$

Monotonicity and extrema

Study the extrema of

$$f(x) = \frac{x^2}{x^2 + 1}$$

$$g(x) = \frac{x^2 + x + 1}{x^2 + 1}$$