University of Toronto - MAT137Y1 - LEC0501

Calculus! About Slide 7

Jean-Baptiste Campesato

November 21st, 2018

<u>Disclaimer</u>: those are *quick-and-dirty* notes written just after the class, so it is very likely that they contain some mistakes/typos...

Send me an e-mail if you find something wrong/strange and I will update the notes.

Question. *Prove that for every* $x \ge 0$ *,*

$$\arcsin\frac{1-x}{1+x} + 2 \arctan\sqrt{x} = \frac{\pi}{2}$$

(*First, check that the above is well defined for* $x \in [0, +\infty)$ *.*

Let $f(x) = \arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x}$. First notice that $\frac{1-x}{1+x} = \frac{1+1-1-x}{1+x} = \frac{2}{1+x} - 1$. Then $x \ge 0$

$$\Rightarrow 1 + x \ge 1$$

$$\Rightarrow \frac{1}{1 + x} \le 1$$

$$\Rightarrow \frac{2}{1 + x} \le 2$$

$$\Rightarrow \frac{2}{1 + x} - 1 \le 1$$

Moreover, if $x \ge 0$ then $\frac{2}{1+x} - 1 > -1$. So, for $x \ge 0$, $\frac{1-x}{1+x} = \frac{2}{1+x} - 1$ is in (-1, 1] which is included in the domain of definition of arcsin $(\text{dom}(\arcsin) = [-1, 1])$.

Besides, the domain of definition of \sqrt{x} is $[0, +\infty)$ and the one of arctan is \mathbb{R} . Hence *f* is defined and continuous on $[0, +\infty)$.

However, be careful that the domain of differentiability of \sqrt{x} is $(0, +\infty)$ and that the domain of differentiability of arcsin is (-1, 1). By the differentiation rules, we only know that *f* is differentiable on $(0, +\infty)$. We can't say anything

By the differentiation rules, we only know that f is differentiable on $(0, +\infty)$. We can't say anything about the differentiability at 0 without providing additional work.

For $x \in (0, +\infty)$, we have

$$f'(x) = -\frac{2}{(1+x)^2} \frac{1}{\sqrt{1 - \left(\frac{1-x}{1+x}\right)^2}} + \frac{1}{\sqrt{x}} \frac{1}{1 + \sqrt{x}^2}$$
$$= -\frac{2}{1+x} \frac{1}{\sqrt{(1+x)^2 - (1-x)^2}} + \frac{1}{\sqrt{x}} \frac{1}{1+x}$$
$$= -\frac{2}{1+x} \frac{1}{\sqrt{4x}} + \frac{1}{\sqrt{x}} \frac{1}{1+x}$$
$$= -\frac{1}{1+x} \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x}} \frac{1}{1+x}$$
$$= 0$$

Since f'(x) = 0 on **the interval** \star $(0, +\infty)$, we know that f is constant on **the interval** $(0, +\infty)$. Therefore there exists $c \in \mathbb{R}$, such that $\forall x \in (0, +\infty)$, f(x) = c.

Moreover, we know that *f* is continuous on $[0, +\infty)$, so $f(0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} c = c$.

Hence *f* is constant on $[0, +\infty)$.

Let's compute f at any point, for instance 0:

$$c = f(0) = \arcsin(1) + 2\arctan(0) = \frac{\pi}{2} + 0 = \frac{\pi}{2}$$

<u>Conclusion</u>: $\forall x \in [0, +\infty)$, $\arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x} = \frac{\pi}{2}$.

Remark. Be careful, we only know that f'(x) = 0 on $(0, +\infty)$, not on $[0, +\infty)$. The continuity at 0 is crucial to prove that f is constant on $[0, +\infty)!$

You can use the following result (directly proved with the MVT).

Theorem. Assume that f is continuous on an **interval** I, differentiable on the interior of I (i.e. omitting the endpoints if there are any). If for all x in the interior of I, f'(x) = 0 then f is constant on I.

Example. *We know that*

- f is continuous on $[0, +\infty)$,
- f is differentiable on $(0, +\infty)$, and
- $\forall x \in (0, +\infty), f'(x) = 0.$

Hence f *is constant on* $[0, +\infty)$ *.*

^{*} As seen in Slide 8, this assumption is very important!