MAT137Y1 – LEC0501 *Calculus!*

ONE-TO-ONE FUNCTIONS & INVERSE TRIG FUNCTIONS

November 14th, 2018

For Monday (Nov 19), watch the videos:

• Local extrema: 5.1, 5.2, 5.3, 5.4

For Wednesday (Nov 21), watch the videos:

- Rolle's Theorem: 5.5, 5.6
- The MVT: 5.7, 5.8, 5.9

• Write the formal definition of " $f : D \rightarrow \mathbb{R}$ is one-to-one".

- 2 Let *f* be the function defined on ℝ by f(x) = 2x³ + 7.
 Prove that *f* is one-to-one.
- Solution Let g be the function defined on \mathbb{R} by $g(x) = 2x^2 + 7$. Prove that g is not one-to-one.

Strictly increasing functions are one-to-one

- Let $f : D \to \mathbb{R}$ a function whose domain D is a subset of \mathbb{R} .
 - **1** Recall the definition of "f is strictly increasing".
 - 2 Recall the definition of "*f* is one-to-one" (from the previous slide).
 - 3 Prove the following result.

Theorem

If f is strictly increasing then f is one-to-one.

4 Now let
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi, n \in \mathbb{R} \right\}$$
.
Is $\tan : D \to \mathbb{R}$ strictly increasing? Is it one-to-one?

6 What about $\tan_{\left|\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right|}$, the restriction of $\tan \operatorname{to}\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$?

Composition of one-to-one functions

Assume for simplicity that all functions in this problem have domain \mathbb{R} . Prove the following theorem.

Theorem

Let f and g be functions. IF f and g are one-to-one, THEN $f \circ g$ is one-to-one.

Suggestion:

- 1 Write the definition of what you want to prove.
- Pigure out the formal structure of the proof.
- 3 Complete the proof (use the hypotheses!)

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Is the following claim TRUE or FALSE? Prove it or give a counterexample.

Claim Let f and g be functions. IF $f \circ g$ is one-to-one, THEN f is one-to-one.

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Is the following claim TRUE or FALSE? Prove it or give a counterexample.

Claim

Let f and g be functions. IF $f \circ g$ is one-to-one, THEN g is one-to-one.

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Let f and g be functions. Assume they each have an inverse.

Is
$$(f \circ g)^{-1} = f^{-1} \circ g^{-1}$$
?

- If YES, prove it.
- If NO, fix the statement.

If you do not know how to start, experiment with the functions

$$f(x) = x + 1,$$
 $g(x) = 2x.$

- **1** Sketch the graph of tan.
- **2** Prove that tan is not one-to-one.
- Select the largest interval containing 0 such that the restriction of tan to it is one-to-one.
 Briefly explain why tan is one-to-one on this interval.
- What's the range of tan restricted to the above interval?
- We define arctan as the inverse of tan restricted to the above interval.

What are the domain and the range of arctan?

6 Sketch the graph of arctan.

Definition of $\arctan - 2$

Remember from the previous slide that $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is defined as the inverse of $\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$.

1 Fill: $\forall x \in ..., \forall y \in ..., (y = \tan(x) \Leftrightarrow x = \arctan(y))$.

- What can you say about tan(arctan(x))? And about arctan(tan(x))? (For which x are these functions defined? What are they equal to? Sketch their graphs.)
- **3** Compute:
 - $1 \tan \left(\arctan \left(0 \right) \right)$
 - **2** $\tan\left(\arctan\left(\sqrt{2}+\pi\right)\right)$
 - $3 \arctan(\tan(1))$

 $\textbf{4} \arctan(\tan(3))$

5 $\arctan\left(\tan\left(\frac{\pi}{2}\right)\right)$

 $\mathbf{6} \arctan(\tan(-\mathbf{\overline{6}}))$

Obtain (and prove) a formula for the derivative of arctan.

Hint: Differentiate the identity

 $\forall t \in \dots$ $\tan(\arctan(t)) = t$

Compute the derivative of

$$f(x) = 2x^2 \arctan(x^2) - \ln(x^4 + 1)$$

and simplify it as much as possible.