MAT137Y1 – LEC0501 *Calculus!*

TRIG DERIVATIVES & IMPLICIT DIFFERENTIATION

For Wednesday (Oct 31), watch the videos:

Jean-Baptiste Campesato

- Derivatives of exponentials and logarithms: 3.13, (3.14), 3.15, 3.16, 3.17, 3.18
- Related rates: 3.19, 3.20, 3.21

October 29th, 2018

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 29, 2018

Derivative from a graph

Below is the graph of a function f. Sketch the graph of its derivative f'.

Derivative of \cos

Let $g(x) = \cos(x)$.

Obtain and prove a formula for its derivative directly from the definition of derivative as a limit.

MAT137Y1 - LEC0501 - Calculus! - Oct 29, 2018

Derivatives of the other trig functions

Using all the basic differentiation rules, as well as

$\sin'(x) = \cos(x), \qquad 0$	$\cos'(x) = -\sin(x),$
--------------------------------	------------------------

quickly obtain and prove formulas for the derivatives of

	1 tan	2 cot	3 sec	4 csc
--	-------	-------	-------	-------

Implicit differentiation

The equation $sin(x + y) + xy^2 = 0$ defines a function y = h(x) near (0,0). Using implicit differentiation, compute

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 29, 2018 5