MAT137Y1 – LEC0501 *Calculus!*

CONTINUITY

October 10th, 2018

For next week

For Monday (Oct 15), watch the videos:

Some limit computations: 2.19, 2.20

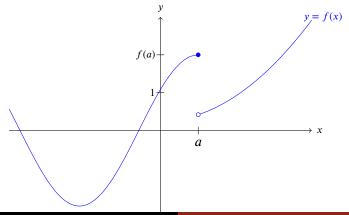
For Wednesday (Oct 17), watch the videos:

- IVT and EVT: 2.21, 2.22
- Definition of a derivative: 3.1, 3.2, 3.3

Remember that a function f is continuous at a if

$$\forall \varepsilon > 0, \, \exists \delta > 0, \, \forall x \in \mathrm{dom}(f), \, \left(|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon \right)$$

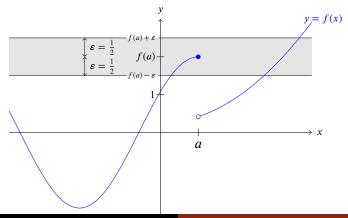
Write the negation.



Remember that a function f is continuous at a if

$$\forall \varepsilon > 0, \, \exists \delta > 0, \, \forall x \in \mathrm{dom}(f), \, \left(|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon \right)$$

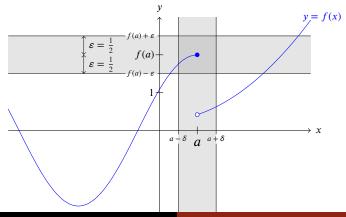
Write the negation.



Remember that a function f is continuous at a if

$$\forall \varepsilon > 0, \, \exists \delta > 0, \, \forall x \in \mathrm{dom}(f), \, \left(|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon \right)$$

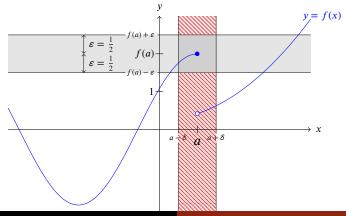
Write the negation.



Remember that a function f is continuous at a if

 $\forall \varepsilon > 0, \, \exists \delta > 0, \, \forall x \in \mathrm{dom}(f), \, \left(|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon \right)$

Write the negation.



Undefined function

Let $a \in \mathbb{R}$ and let f be a function defined on $\mathbb{R} \setminus \{a\} = (-\infty, a) \cup (a, +\infty)$.

What can we conclude?

- 2 $\lim_{x \to a} f(x)$ doesn't exist.
- 3 No conclusion. $\lim_{x\to a} f(x)$ may or may not exist.

What else can we conclude?

- $\mathbf{4}$ f is continuous at a.
- f is not continuous at a.
- 6 No conclusion. f may or may not be continuous at a.

Undefined function

Let $a \in \mathbb{R}$ and let f be a function defined on $\mathbb{R} \setminus \{a\} = (-\infty, a) \cup (a, +\infty)$.

What can we conclude?

- $1 \lim_{x \to a} f(x)$ exist
- 2 $\lim_{x \to a} f(x)$ doesn't exist.
- 3 No conclusion. $\lim_{x\to a} f(x)$ may or may not exist.

What else can we conclude?

- $\mathbf{4}$ f is continuous at a.
- **6** No conclusion. f may or may not be continuous at a.

New continuous functions

We want to prove the following theorem

Theorem

Let f and g be two functions.

IF f and g are continuous

THEN $h(x) = \max(f(x), g(x))$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

New continuous functions

We want to prove the following theorem

Theorem

Let f and g be two functions.

IF f and g are continuous

THEN $h(x) = \max(f(x), g(x))$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: What is the number $\frac{a+b+|a-b|}{2}$?

There is a way to prove this quickly without writing any epsilons.

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } x < 1\\ x^2 & \text{if } 1 \le x \le 2\\ \sqrt{8x} & \text{if } x > 2 \end{cases}$$

- 1 Sketch its graph.
- 2 Conclude graphically.
- 3 Conclude formally.

Write a "two-line proof" of:

Claim

$$\lim_{x \to a} f(x) = 0 \Leftrightarrow \lim_{x \to a} |f(x)| = 0$$

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(x)\sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Is f continuous at 0?

We will see another method on slide 12.

Write a "two-line proof" of:

Claim

$$\lim_{x \to a} f(x) = 0 \Leftrightarrow \lim_{x \to a} |f(x)| = 0$$

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(x)\sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Is f continuous at 0?

We will see another method on slide 12.

Write a "two-line proof" of:

Claim

$$\lim_{x \to a} f(x) = 0 \Leftrightarrow \lim_{x \to a} |f(x)| = 0$$

Consider $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(x)\sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Is f continuous at 0?

We will see another method on slide 12.

True or False?

Assuming these limits exist

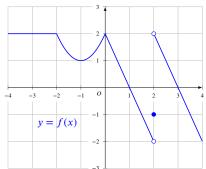
$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

True or False?

Assuming these limits exist

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

Remember:



What are
$$\lim_{x\to 0} f(f(x))$$
 and $f\left(\lim_{x\to 0} f(x)\right)$?

Fix

What extra condition can we add on f for this to be true?

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

A composition theorem

Write a formal proof for

Theorem

Let $a, L \in \mathbb{R}$.

Let f and g be functions with domain \mathbb{R} .

IF

- $\lim_{x \to a} g(x) = L$, and
- f is continuous at L

THEN $\lim_{x \to a} f(g(x)) = f(L)$.

A composition theorem

Write a formal proof for

Theorem

Let $a, L \in \mathbb{R}$.

Let f and g be functions with domain \mathbb{R} .

IF

- $\lim_{x \to a} g(x) = L$, and
- f is continuous at L

THEN
$$\lim_{x \to a} f(g(x)) = f(L)$$
.

Under these assumptions:

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

True or False?

Is this theorem true?

Claim

Let $a \in \mathbb{R}$.

Let f and g be functions defined near a.

- IF $\lim_{x \to a} f(x) = 0$,
- THEN $\lim_{x \to a} [f(x)g(x)] = 0$.

A new theorem about products and limits

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a.

IF

- $\lim_{x \to a} f(x) = 0$, and
- g is bounded, i.e. $\exists M > 0, \forall x \neq a, |g(x)| \leq M$.

THEN
$$\lim_{x \to a} (f(x)g(x)) = 0.$$

- 1 Write down formally what you want to prove.
- 2 Write down the structure of the formal proof.
- 8 Rough work.
- Write down a complete formal proof.

A new theorem about products and limits

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a.

IF

- $\lim_{x \to a} f(x) = 0$, and
- g is bounded, i.e. $\exists M > 0, \forall x \neq a, |g(x)| \leq M$.

THEN
$$\lim_{x \to a} (f(x)g(x)) = 0.$$

- 1 Write down formally what you want to prove.
- 2 Write down the structure of the formal proof.
- 3 Rough work.
- 4 Write down a complete formal proof.

Application: prove that $\lim_{x\to 0} \sin(x) \sin\left(\frac{1}{x}\right) = 0$.

Change of Variables

On Oct 3, slide 5, question 3, we used a light version of:

Theorem

Let f be a function defined around a (but maybe not at a) and g be a function defined around b (but maybe not at b).

$$\mathbf{1} \lim_{t \to b} g(t) = a,$$

$$2 \lim_{x \to a} f(x) = L,$$

3 $g(t) \neq a$ around b (but not at b), i.e. $\exists \eta > 0, \ \forall t \in \text{dom}(g), \ 0 < |t - b| < \eta \implies g(t) \neq a.$

THEN
$$\lim_{t \to b} f(g(t)) = L$$

■ Warning: there are **THREE** assumptions here. If *f* is continuous, better use the result slide 10.

Composition and limits

Construct two functions f and g such that

$$\lim_{x \to 1} f(x) = 2$$

and

$$\lim_{x \to 0} g(x) = 1$$

and

$$\lim_{x \to 0} f(g(x)) = 42$$

Hint: use slides 10 and 13 to find conditions on f and g.