

Graphical interpretation

Remember that a function f is continuous at a if

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \text{dom}(f), (|x-a| < \delta \implies |f(x) - f(a)| < \varepsilon)$

Write the negation.

Is the following function continuous at *a*? Explain why.

Undefined function

Let $a \in \mathbb{R}$ and let *f* be a function defined on $\mathbb{R} \setminus \{a\} = (-\infty, a) \cup (a, +\infty)$.

What can we conclude?

- $\lim_{x \to a} f(x) \text{ exist}$
- **2** $\lim f(x)$ doesn't exist.
- **3** No conclusion. $\lim_{x \to a} f(x)$ may or may not exist.

What else can we conclude?

- 4 f is continuous at a.
- **6** *f* is not continuous at *a*.
- 6 No conclusion. *f* may or may not be continuous at *a*.

New continuous functions

We want to prove the following theorem

Theorem

Let *f* and *g* be two functions. IF *f* and *g* are continuous THEN $h(x) = \max(f(x), g(x))$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: What is the number $\frac{a+b+|a-b|}{2}$? There is a way to prove this quickly without writing any epsilons.

Is this function continuous?

Consider $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } x < 1\\ x^2 & \text{if } 1 \le x \le 2\\ \sqrt{8x} & \text{if } x > 2 \end{cases}$$

Sketch its graph.
Conclude graphically.
Conclude formally.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 10, 2018

6

8

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 10, 2018

Is this function continuous?

Write a "two-line proof" of:

Claim $\lim_{x \to a} f(x) = 0 \Leftrightarrow \lim_{x \to a} |f(x)| = 0$

Consider $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \sin(x)\sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Is f continuous at 0?

We will see another method on slide 12.

True or False?

Assuming these limits exist

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

Remember:

What extra condition can we add on f for this to be true?

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

Write a formal proof for

Under these assumptions:

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 10, 2018 10

True or False?

Is this theorem true?

Claim

Let $a \in \mathbb{R}$.

Let f and g be functions defined near a.

Jean-Baptiste Campesato

- IF $\lim_{x \to a} f(x) = 0$,
- THEN $\lim_{x \to a} [f(x)g(x)] = 0.$

A new theorem about products and limits

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. IF

- $\lim_{x \to a} f(x) = 0$, and
- g is bounded, i.e. $\exists M > 0, \forall x \neq a, |g(x)| \leq M$.

THEN $\lim_{x \to a} (f(x)g(x)) = 0.$

- 1 Write down formally what you want to prove.
- **2** Write down the structure of the formal proof.
- 8 Rough work.
- 4 Write down a complete formal proof.

Application: prove that $\lim_{x\to 0} \sin(x) \sin\left(\frac{1}{x}\right) = 0.$

MAT137Y1 - LEC0501 - Calculus! - Oct 10, 2018

9

Change of Variables

On Oct 3, slide 5, question 3, we used a light version of:

Theorem

Let f be a function defined around a (but maybe not at a) and g be a function defined around b (but maybe not at b).

1 $\lim_{t \to b} g(t) = a,$ IF 2 $\lim_{x \to a} f(x) = L,$ 3 $g(t) \neq a \text{ around } b \text{ (but not at } b\text{), i.e.}$ $\exists \eta > 0, \forall t \in \text{dom}(g), 0 < |t - b| < \eta \implies g(t) \neq a.$ THEN $\lim_{t \to b} f(g(t)) = L$

A Warning: there are **THREE** assumptions here. If f is continuous, better use the result slide 10.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 10, 2018 13

Composition and limits

Construct two functions f and g such that

$$\lim_{x \to 1} f(x) = 2$$

and

$$\lim_{x \to 0} g(x) = 1$$

and

$$\lim_{x \to 0} f(g(x)) = 42$$

Hint: use slides 10 and 13 to find conditions on f and g.

Jean-Baptiste Campesato MAT137Y1 – LEC0501 – Calculus! – Oct 10, 2018 14