University of Toronto – MAT137Y1 – LEC0501 *Calculus!* Slide 8: proof of non-existence

Jean-Baptiste Campesato

October 3rd, 2018

<u>Disclaimer</u>: those are *quick-and-dirty* notes written just after the class, so there are probably some small mistakes/typos...

Send me an e-mail if you find something wrong/strange and I will update the notes.

Question: Prove that $\lim_{x \to 0^+} \frac{1}{x}$ doesn't exist.

Remember that $\lim_{x\to 0^+} \frac{1}{x}$ exists if there exists $L \in \mathbb{R}$ such that $\lim_{x\to 0^+} \frac{1}{x} = L$, i.e.

$$\exists L \in \mathbb{R}, \, \forall \varepsilon > 0, \, \exists \delta > 0, \, \forall x \in \mathbb{R} \setminus \{0\}, \, \left(0 < x < \delta \implies \left|\frac{1}{x} - L\right| < \varepsilon\right)$$

First I take $x \in \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, +\infty)$, because it is the domain of $f(x) = \frac{1}{x}$.

Then I focus only on *x* satisfying $0 < x < \delta$ because it is a one-sided limit at 0^+ : we are interested in the behaviour of $f(x) = \frac{1}{x}$ when *x* is close to 0, but greater than 0. Remember that:

- for a limit at *a* (both-sided, usual limit), we assume $0 < |x a| < \delta$ (because we want to work with *x* close to *a* but not *a*),
- for a limit at a^+ (right-sided), we assume $0 < x a < \delta$ ($\Leftrightarrow a < x < a + \delta$, because we want to work with *x* close to *a* but greater than *a*),
- for a limit at a^- (left-sided), we assume $0 < a x < \delta$ ($\Leftrightarrow a \delta < x < a$, because we want to work with *x* close to *a* but less than *a*),

What we want to show: the negation of the above statement, i.e.

$$\forall L \in \mathbb{R}, \exists \varepsilon > 0, \forall \delta > 0, \exists x \in \mathbb{R} \setminus \{0\}, (0 < x < \delta \text{ and } \left|\frac{1}{x} - L\right| \ge \varepsilon)$$

The difficult part consists in finding suitable ε and x.

Rough work:

$$\left|\frac{1}{x} - L\right| \ge \left|\left|\frac{1}{x}\right| - |L|\right| \quad \text{by the reverse triangle inequality}$$
$$\ge \left|\frac{1}{x}\right| - |L|$$
$$= \frac{1}{x} - |L| \quad \text{since } x > 0$$

So, it is enough to find ε and x such that

$$\frac{1}{x} - |L| \ge \varepsilon$$

$$\Leftrightarrow \frac{1}{x} \ge \varepsilon + |L|$$

$$\Leftrightarrow x \le \frac{1}{\varepsilon + |L|}$$

There is no constraint on ε , so we can take $\varepsilon = 1$. Then we need to have $x \leq \frac{1}{1+|L|}$. Remember that we also want $0 < x < \delta$. So we can take $x = \min\left(\frac{1}{1+|L|}, \frac{\delta}{2}\right)$.

The rough work is done... Now you can start to write the proof.

Proof:

Let $L \in \mathbb{R}$. Fix $\varepsilon = 1$, we have $\varepsilon > 0$. Let $\delta > 0$. Fix $x = \min\left(\frac{1}{1+|L|}, \frac{\delta}{2}\right)$, we have $x \neq 0$. Then 0 < x since either $x = \frac{1}{1+|L|} > 0$ or $x = \frac{\delta}{2} > 0$, and $x \le \frac{\delta}{2} < \delta$. Furthermore

$$\left|\frac{1}{x} - L\right| \ge \left|\left|\frac{1}{x}\right| - |L|\right| \quad \text{by the reverse triangle inequality}$$
$$\ge \left|\frac{1}{x}\right| - |L|$$
$$= \frac{1}{x} - |L| \quad \text{since } x > 0$$
$$\ge 1 + |L| - |L| \quad \text{since } x \le \frac{1}{1 + |L|}$$
$$= 1 = \varepsilon$$

Hence we have well

$$0 < x < \delta$$

and

 $|f(x) - L| \ge \varepsilon$