University of Toronto – MAT137Y1 – LEC0501 *Calculus!* Slide 6: your first ε – δ proof

Jean-Baptiste Campesato

October 1st, 2018

<u>Disclaimer</u>: those are *quick-and-dirty* notes written just after the class, so there are probably some small mistakes/typos...

Send me an e-mail if you find something wrong/strange and I will update the notes.

Question: Prove that $\lim_{x \to 1} (x^2 + x) = 2$.

<u>What we want to show:</u> $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}, (0 < |x - 1| < \delta \implies |x^2 + x - 2| < \epsilon)$

The difficult part consists in finding a suitable δ . Notice that δ is introduced before *x* in the above statement, so δ can't be defined in terms of *x*, only in terms of ϵ .

Rough work: There is no trick, formula or algorithm to find a suitable δ . At first glance, such proofs will look like difficult/abstract. However, the more you will practice, the more comfortable you will be with this kind of proofs. Remember, *practice makes perfect*!

The "rough work" you used to find δ is not part of the proof. It should stay in your draft (you shouldn't submit it). We don't care about how you found δ .

In the proof, you'll propose a δ , and prove that it works. You only have to explain why it works (that's the proof).

Here is my strategy for the rough work of this exercise: first we are going to assume that we have a $\delta > 0$ such that $0 < |x - 1| < \delta$ and then we will manipulate the conclusion we would like to have $(|x^2 + x - 2| < \varepsilon)$ in order to find conditions on δ for the conclusion to be true. Remember, the rough work stays in your draft: it doesn't need to be 100% mathematically correct. Just enough to give you hints to find a good δ (then you will have to write a 100% mathemati-

cally/logically/syntactically correct proof).

Since we only know that $0 < |x-1| < \delta$, we need to perform algebraic manipulations on $|x^2 + x - 2|$ to make |x - 1| appears (and no other occurrence of x: remember, δ can't depend on x).

= (x-1)(x+2)	
$= x - 1 \cdot x + 2 $	Good, $ x - 1 $ appears! But there is still another x that we should remove.
$= x - 1 \cdot (x - 1) + 3 $	Just write $x = (x - 1) + 1!$
$\leq x-1 (x-1 +3)$	By the triangle inequality.
$= x - 1 ^2 + 3 x - 1 ^2$	
$<\delta^2 + 3\delta$	Because $0 < x - 1 < \delta$
	= (x - 1)(x + 2) = x - 1 \cdot x + 2 = x - 1 \cdot (x - 1) + 3 \$\le x - 1 (x - 1 + 3)\$ = x - 1 ² + 3 x - 1 \$< \delta^2 + 3\delta\$

If we find a δ such that $\delta^2 + 3\delta \leq \epsilon$, we win! Notice that it is OK to work with a large \leq here (and not a strict <). Indeed we already obtained a strict < in the last step. Notice it is enough to find a δ such that $\delta^2 \leq \frac{\epsilon}{2}$ and $3\delta \leq \frac{\epsilon}{2}$. Indeed, then

$$\delta^2 + 3\delta \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

But

 $\delta^2 \leq \frac{\epsilon}{2} \Leftrightarrow \delta \leq \sqrt{\frac{\epsilon}{2}}$ since the involved numbers are positive

and

$$3\delta \leq \frac{\varepsilon}{2} \Leftrightarrow \delta \leq \frac{\varepsilon}{6}$$

So if we take $\delta = \min\left(\sqrt{\frac{\epsilon}{2}}, \frac{\epsilon}{6}\right)$, both inequalities would be satisfied and we would obtain

$$\left|x^2 + x - 2\right| < \delta^2 + 3\delta \le \varepsilon$$

as wanted!

The rough work is done... Now you can start to write the proof.

Proof:

Let $\varepsilon > 0$. Fix $\delta = \min\left(\sqrt{\frac{\varepsilon}{2}}, \frac{\varepsilon}{6}\right)$. Let $x \in \mathbb{R}$. Assume that $0 < |x - 1| < \delta$. Then

$$\begin{aligned} |x^2 + x - 2| &= |(x - 1)(x + 2)| \\ &= |x - 1| \cdot |x + 2| \\ &= |x - 1| \cdot |(x - 1) + 3| \\ &\leq |x - 1|(|x - 1| + 3) \\ &= |x - 1|^2 + 3|x - 1| \\ &< \delta^2 + 3\delta \quad \text{Since } |x - 1| < \delta \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad \text{Since } 0 < \delta \le \sqrt{\frac{\varepsilon}{2}} \text{ and } \delta \le \frac{\varepsilon}{6} \\ &= \varepsilon \end{aligned}$$
So $|x^2 + x - 2| < \varepsilon$.

There are many possibilities for δ , you just need to find one, and to explain why it works... Using the method described in the video, you would obtain $\delta = \min\left(1, \frac{\varepsilon}{4}\right)$ which also works. Indeed, then $|x - 1| < \delta \le 1 \implies |x + 2| < 4$. And $|x - 1| < \delta \le \frac{\varepsilon}{4}$. Thus

$$|x^{2} + x - 2| = |x - 1| \cdot |x + 2| < \frac{\epsilon}{4} 4 = \epsilon$$