
MAT 137Y: Calculus!
Problem Set 9

Due on Thursday, March 14 by 11:59pm via crowdmark

1. (a) Let a ∈ R. For which values of a is the integral∫ 2

1

1

(x− 1)a
dx

convergent? For which is it divergent?
Box your final answer at the top of your solution, then proceed to explain,
compute, or prove anything you need to.

∫ 2

1

1

(x− 1)a
dx is convergent if and only if a < 1.

Proof :
Since f(x) = 1

(x−1)a
is continuous on (1, 2], the integral is only improper at 1.

Let t ∈ (1, 2], then, ∫ 2

t

1

(x− 1)a
dx =

∫ 1

t−1

1

ua
du

using the substitution u = x− 1.

But we already know (Riemann’s improper integral 1
xa at 0) that lim

t→1+

∫ 1

t−1

1

ua
du

exists if and only if a < 1.

Hence lim
t→1+

∫ 2

t

1

(x− 1)a
dx exists if and only if a < 1. Q.E.D.



(b) Let a, b, c ∈ R. For which values of a, b, and c is the integral∫ 2

1

ecx

(x− 1)a(lnx)b
dx.

convergent? For which values is it divergent?
Box your final answer at the top of your solution, then proceed to explain,
compute, or prove anything you need to.

Hint: Calculate lim
x→1

lnx

x− 1
. Then attempt the problem when a = c = 0 first.∫ 2

1

ecx

(x− 1)a(lnx)b
dx is convergent if and only if a+ b < 1.

The proof relies on the following lemma:

Lemma. lim
x→1

x− 1

lnx
= 1

Proof. We know that:
• lim

x→1
(x− 1) = 0 and lim

x→1
ln(x) = 0.

• x 7→ (x− 1) and ln are differentiable near 1.
• ln(x) and ln′(x) = 1

x
don’t vanish near 1 (except at 1 for ln).

• lim
x→1

d(x−1)
dx

d ln(x)
dx

= lim
x→1

1
1
x

= 1

Hence, according to L’Hôpital’s rule, lim
x→1

x− 1

lnx
= 1.

Proof :
Since g(x) = ecx

(x−1)a(lnx)b
is continuous on (1, 2], the integral is improper at 1.

Let h(x) = 1
(x−1)a+b then

i. g and h are continuous on (1, 2],
ii. ∀x ∈ (1, 2], g(x) ≥ 0,
iii. ∀x ∈ (1, 2], h(x) > 0, and,

iv. lim
x→1+

g(x)

h(x)
= lim

x→1+
ecx
(
x− 1

lnx

)b

= ec×1 = ec > 0 (using the above lemma).

Hence, according to the LCT,
∫ 2

1

ecx

(x− 1)a(lnx)b
dx is convergent if and only if∫ 2

1

1

(x− 1)a+b
dx is convergent.

According to the first question, the latter improper integral is convergent if and
only if a+ b < 1. Q.E.D.



2. Let f be a bounded, continuous, non-negative function defined, at least, on an
interval of the form [c,∞) for some c ∈ R.

(a) Prove that IF lim
x→∞

f(x) exists and is not 0, THEN the improper integral∫ ∞

c

f(x)dx is divergent.

Hint: To get a feel for this question, draw a picture of f with lim
x→∞

f(x) = 0.1,
and convince yourself why it’s true in this case. Then write the general proof.
You will need to use the definition of lim

x→∞
f(x). Your argument will also prob-

ably involve the BCT.

We know that there exists l ∈ R \ {0} such that lim
x→+∞

f(x) = l, i.e.

∀ε > 0, ∃A ∈ R, ∀x ∈ [c,+∞), (x ≥ A =⇒ |f(x)− l| < ε) (1)

Lemma. l > 0

Sketch of proof. Assume by contradiction that l < 0.
Applying (1) to ε = − l

2
> 0, we know that for x large enough

f(x)− l = |f(x)− l| < − l

2

where the first inequality comes from the fact that f(x) and −l are both non-
negative.
Therefore f(x) < l

2
< 0, which contradicts the fact that f(x) ≥ 0.

Hence l ≥ 0. But, we also assumed that l ̸= 0.

We want to show that
∫ +∞

c

f(x)dx is divergent.
Proof 1:

• Applying (1) to ε = l
2
> 0, we know that there exists A ∈ R such that for

any x ∈ [c,+∞),
if x ≥ A then |f(x)− l| < l

2
. (2)

• Set d = max(c, A). Let x ∈ [d,+∞).
Therefore f(x) is well-defined and x ≥ A. Hence, by (2), we deduce that
|f(x) − l| < l

2
which is equivalent to − l

2
< f(x) − l < l

2
and from which

we derive that l
2
< f(x).

• We know that
i. x 7→ l

2
and f are continuous on [d,+∞),



ii. ∀x ∈ [d,+∞), 0 ≤ l
2
≤ f(x), and,

iii.
∫ +∞

d

l

2
dx is divergent since lim

t→+∞

∫ t

d

l

2
dx = lim

t→+∞

l

2
t− l

2
d = +∞.

So, according to the BCT,
∫ +∞

d

f(x)dx is divergent.

• Hence lim
t→+∞

∫ t

c

f(x)dx = lim
t→+∞

(∫ d

c

f(x)dx+

∫ t

d

f(x)dx

)
doesn’t exist.

• We proved that
∫ +∞

c

f(x)dx is divergent. Q.E.D.

Proof 2:
Notice that lim

x→+∞

f(x)

1
= l > 0.

Hence, according to the LCT,
∫ +∞

c

f(x)dx is divergent since
∫ +∞

c

1dx is.

(b) Prove that IF f is eventually decreasing and the improper integral
∫ ∞

c

f(x)dx

is convergent, THEN lim
x→∞

f(x) = 0.

Hint: This is a very short proof. Seriously: if you do not find it very short, you
are missing something. Use Question 1 from PS6 and Question 2a from this
Problem Set.

We know that f is eventually decreasing and bounded on [c,+∞), hence, ac-
cording to Q1 of PS6, l = lim

x→+∞
f(x) exists.

Now, assume by contradiction that l ̸= 0.
Then, according to the previous question,

∫ +∞
c

f(x)dx is divergent.
Which contradicts our assumption that this improper integral is convergent.
Conclusion: lim

x→+∞
f(x) = 0. Q.E.D.



(c) Show with an example that it is possible that the improper integral
∫ ∞

c

f(x)dx

be convergent while lim
x→∞

f(x) is not 0.

Consider the function f defined on [0,+∞) whose graph consists into trian-
gular peaks centered around each n ∈ N>0 with base length 1

2n
and height 2

(and the function is equal to 0 between the peaks).

x

y

O
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Here is a zoom around x = n ∈ N \ {0}:
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The area is
1
2n

2

2
= 1

2n

Intuitively, the area below the graph is given by the convergent geometric series
+∞∑
n=1

1

2n
and therefore such a function provides a suitable counter-example.



Let’s prove it formally.
First, by construction, this function is bounded, non-negative and continuous.

Claim 1:
∫ +∞

0

f(t)dt is convergent.

• For x ∈ [0,+∞), we set F (x) =

∫ x

0

f(t)dt.

• F is non-decreasing: let x1, x2 ∈ [0,+∞) such that x1 < x2 then

F (x2)− F (x1) =

∫ x2

x1

f(t)dt ≥ 0 (since x2 > x1 and f ≥ 0)

and hence F (x1) ≤ F (x2).
• F is bounded from above: let x ∈ [0,+∞) and denote by ⌈x⌉ the ceiling

of x which is the least integer greater than or equal to x. Then

F (x) ≤ F (⌈x⌉)

=

∫ ⌈x⌉

0

f(t)dt

= Area below the graph of f on [0, ⌈x⌉]

=

⌈x⌉∑
n=1

(
1

2

)n

<
+∞∑
n=1

(
1

2

)n

= 1

The last inequality derives from the fact that the sequence of the partial

sums
(

k∑
n=1

1

2n

)
k≥1

is increasing and convergent, hence, from the MCT, its

limit is its upper bound.
• According to the MCT for functions, lim

x→+∞
F (x) exists, which proves the

claim.

Claim 2: lim
x→+∞

f(x) doesn’t exist.

• Assume by contradiction that lim
x→+∞

f(x) = l.

• Then, by considering the sequence (f(n))n≥1, we get that

l = lim
n→+∞

f(n) = lim
n→+∞

2 = 2



• similarly, for the sequence
(
f
(
n+ 1

2

))
n≥1

, we obtain

l = lim
n→+∞

f

(
n+

1

2

)
= lim

n→+∞
0 = 0

• Hence, 0 = 2, which is false.
We have constructed a function f : [0,+∞) → R which is continuous, bounded

and non-negative, such that
∫ +∞

0

f(x)dx is convergent whereas lim
x→+∞

f(x)

doesn’t exist. Q.E.D.


