
MAT 137Y: Calculus!
Problem Set 7

Due on Thursday, January 31 by 11:59pm via crowdmark

1. Let a, b, c, k ∈ R. Compute the following limit

lim
x→0

∫ bx

ax

[∫ kt

ct
e−s

2
ds
]
dt

cosx− 1

Make sure you explain what you are doing and to justify the steps you take. You
will not get any credit for a bunch of calculations without any words. If you find
the calculation hard, it may be helpful to give names to some of the intermediate
functions.

We first introduce intermediate functions that will be useful to explain the compu-
tation.

• The function f(x) = e−x
2

is continuous on R. Hence, according to FTC–1, the
function

F (x) =

∫ x

0

e−s
2

ds

is well-defined and differentiable on R and moreover F ′(x) = e−x
2
.

• The function

g(x) =

∫ kx

cx

e−s
2

ds =

∫ kx

0

e−s
2

ds−
∫ cx

0

e−s
2

ds = F (kx)− F (cx)

is differentiable on R since F is.

• Since g is continuous, as a differentiable function, we can apply FTC–1 again
to show that the function

G(x) =

∫ x

0

g(t)dt

is well-defined, differentiable on R and that G′(x) = g(x).

• Set

H(x) =

∫ bx

ax

[∫ kt

ct

e−s
2

ds

]
dt = G(bx)−G(ax)

• We know that H is differentiable since G is.



Notice that ∫ bx

ax

[∫ kt

ct
e−s

2
ds
]
dt

cosx− 1
=

H(x)

cos(x)− 1

We are going to compute the limit of the question by applying L’Hôpital’s rule twice.

Step 1: computation of lim
x→0

d
dx

(
H(x)

)
d
dx

(
cos(x)− 1

) .

First notice that

d
dx

(
H(x)

)
d
dx

(
cos(x)− 1

) =
bG′(bx)− aG′(ax)

− sin(x)
=
ag(ax)− bg(bx)

sin(x)

(a) Since g is continuous, we have

lim
x→0

(
ag(ax)− bg(bx)

)
= ag(0)− bg(0) = 0− 0 = 0

and since sin is continuous, we have

lim
x→0

sin(x) = sin(0) = 0

(b) Using the differentiation rules (including the chain rule), we know that the
numerator is differentiable and that

d

dx

(
ag(ax)− bg(bx)

)
= a2g′(ax)− b2g′(bx)

= a2ke−(kax)
2 − a2ce−(cax)2 − b2ke−(kbx)2 + b2ce−(cbx)

2

(c) The denominator is differentiable and sin′(x) = cos(x).

(d) There exists a small interval centered at 0 such that sin(x) 6= 0 and sin′(x) =
cos(x) 6= 0 on this interval, except at 0 for sin.

(e) By continuity of the involved functions and by the limit laws, we get

lim
x→0

a2ke−(kax)
2 − a2ce−(cax)2 − b2ke−(kbx)2 + b2ce−(cbx)

2

cos(x)
=
a2k − a2c− b2k + b2c

1

= (a2 − b2)(k − c)

Hence, according to L’Hôpital’s rule,

lim
x→0

d
dx

(
H(x)

)
d
dx

(
cos(x)− 1

) = (a2 − b2)(k − c)



Step 2: computation of lim
x→0

H(x)

cos(x)− 1
.

(a) By continuity of G and cos, we know that

lim
x→0

H(x) = G(0)−G(0) = 0

and that
lim
x→0

cos(x)− 1 = cos(0)− 1 = 0

(b) According to the chain rule, H is differentiable.

(c) The denominator is differentiable and d
dx

(
cos(x)− 1

)
= − sin(x).

(d) There exists a small interval centered at 0 such that cos(x) − 1 6= 0 and
− sin(x) 6= 0 on this interval except at 0.

(e) We have proved in Step 1 that lim
x→0

d
dx

(
H(x)

)
d
dx

(
cos(x)− 1

) = (a2 − b2)(k − c)

Hence, according to L’Hôpital’s rule:

lim
x→0

H(x)

cos(x)− 1
= (a2 − b2)(k − c)

Conclusion:

lim
x→0

∫ bx

ax

[∫ kt

ct
e−s

2
ds
]
dt

cosx− 1
= (a2 − b2)(k − c)



2. Below is the graph of the function f :

The domain of f is R and the graph continues to the right and to the left as you
expect. We define a new function H by

H(x) =

∫ ∫ x
0 f(t)dt

0

f(s)ds

How many local maxima and local minima does H have? Give the approximate
x-coordinate for each one of them.

Hint: If you are having trouble computing the derivative of H, we recommend again
that you give names to the intermediate functions.

• We know that f is continuous on R hence, according to FTC–1,

F (x) =

∫ x

0

f(t)dt

is well-defined, differentiable on R and moreover F ′ = f .

• Notice that

H(x) =

∫ ∫ x
0 f(t)dt

0

f(s)ds =

∫ F (x)

0

f(s)ds = F (F (x))

• Hence, by the chain rule, H is differentiable on R and

H ′(x) = F ′(x)F ′(F (x)) = f(x)f(F (x))



• We know that the local extrema are reached at the critical points,
i.e. at x ∈ R such that H ′(x) = 0.

Since
H ′(x) = 0⇔

(
f(x) = 0 or f(F (x)) = 0

)
we are going to study these two cases separately.

Case 1: f(x) = 0
According to the graph, there are three solutions which are −1, 0, and 1.

Case 2: f(F (x)) = 0
Using the previous case, we are looking for x ∈ R such that F (x) = −1, 0 or 1.

The graph of f allows us to write the following variation table:

x

F ′(x) =
f(x)

F (x)

−∞ −1 0 1 +∞

+ 0 − 0 + 0 +

−∞−∞

αα

00

+∞+∞
β

Moreover, still using the graph of f , we know that

• α = F (−1) =
∫ −1
0

f(t)dt = −
∫ 0

−1 f(t)dt ∈ (0, 1) (that’s the yellow area below),
i.e.

0 < α < 1

• β = F (1) =
∫ 1

0
f(t)dt ∈ (0, 1) (that’s the first part of the blue area below), i.e.

0 < β < 1

Since F is continuous, as a differentiable function, we can use the IVT and the
monotonicity of F to conclude that:

(a) There is exactly one x0 ∈ (−∞,−1) such that F (x0) = −1.

(b) There is exactly one x1 ∈ (−∞,−1) such that F (x1) = 0.

(c) F (0) = 0

(d) There is exactly one x5 ∈ (1,+∞) such that F (x5) = 1.



We can find approximate values for these xi by looking at the graph of f :

−2 −1 1 2

−1

1

2

3

4

5

x0 x1 x5O

y = f(x)

(a) We know that x1 is the point such that the red area is equal to the yellow one,
so that F (x1) = 0, we read graphically x1 ' −1.35.

(b) We know that x0 is the point such that the green area is equal to 1, so that
F (x0) = −1, we read graphically x0 ' −1.60.

(c) We know that x5 is the point such that the blue area is equal to 1, so that
F (x5) = 1, we read graphically x5 ' 1.85.

Therefore the critical points are:
x0 ' −1.60, x1 = −1.35, x2 = −1, x3 = 0, x4 = 1 and x5 ' 1.85.

We still need to figure out if they are local extrema or not.

• Notice that

0 < x < y ⇒ 0 < F (x) < F (y)⇒ 0 < H(x) < H(y)

Hence H is strictly increasing on (0,+∞).
So H has no local extrema at x4 and x5.

• We know that H(x1) = H(x3) = 0 whereas H is positive around these points,
so they are local min.

• Since f is continuous on [x1, x3], we know by the EVT that f has a min and a
max on this interval. The max is among the endpoints and the critical points
x2. Since H(x1) = H(x3) = 0 and H(x2) = F (F (x2)) = F (1) > 0, we deduce
that H(x2) is a local max.



• Since f is continuous on [−10, x1], we know by the EVT that f has a min and
a max on this interval.
The max is among the endpoints and the critical point x0.
Since H(−10) < 0, H(x1) = 0 and H(x0) = F (F (x0)) = F (−1) = α > 0, we
deduce that H(x0) is a local max.

Conclusion :

• There is a local max at x0 ' −1.60.

• There is a local min at x1 ' −1.35.

• There is a local max at x2 = −1.

• There is a local min at x3 = 0.

x0 x1 x2 x4 x5

−0.3

−0.2

−1 · 10−1

0.1

0.2

0.3

O

y = H(x)



3. In this problem, you are going to compute the exact value of the integral

I =

∫ 1

−2

(
x2 + 1

)
dx using Riemann sums. Let us call f(x) = x2 + 1. Since f is

continuous on [−2, 1], we know it is integrable. Hence, its value can be computed
using Riemann sums as video 7.11 explains.

For every natural number n, let us call Pn the partition that splits [−2, 1] into n equal
sub-intervals. Notice that lim

n→∞
||Pn|| = 0. Hence, we can write I = lim

n→∞
S?
Pn

(f) where

S?
Pn

(f) is any Riemann sum for f and Pn. In particular, to make things simpler, we
will use Riemann sums always choosing the right end-point to evaluate f on each
subinterval.

(a) What is the length of each sub-interval in Pn?

The length of [−2, 1] is 1− (−2) = 3.
Since Pn consists in breaking [−2, 1] into n subintervals of same length, we ob-
tain that the length of each subinterval is 3

n
.

(b) Let us write Pn = {x0, x1, . . . , xn}. Find a formula for xi in terms of i and n.

xi = −2 + i
3

n
= −2 +

3i

n

(c) Since we are using the right-endpoint, it means we are picking x?i = xi. Use
your above answers to obtain an expression for S?

Pn
(f) in the form of a sum

with sigma notation.

S?
Pn

(f) =
n∑

i=1

(
(xi − xi−1)f(x?i )

)
=

n∑
i=1

(
(xi − xi−1)f(xi)

)
=

n∑
i=1

(
3

n
f

(
−2 +

3i

n

))

=
3

n

n∑
i=1

((
−2 +

3i

n

)2

+ 1

)



(d) Using the formulas

N∑
i=1

i =
N(N + 1)

2
,

N∑
i=1

i2 =
N(N + 1)(2N + 1)

6
,

N∑
i=1

i3 =
N2(N + 1)2

4

if needed, add up the expression you got to obtain a nice, compact formula for
S?
Pn

(f) without any sums or sigma symbols.

S?
Pn

(f) =
3

n

n∑
i=1

((
−2 +

3i

n

)2

+ 1

)

=
3

n

n∑
i=1

(
9

n2
i2 − 12

n
i+ 5

)
=

27

n3

n∑
i=1

i2 − 36

n2

n∑
i=1

i+
15

n

n∑
i=1

1

=
27

n3
· n(n+ 1)(2n+ 1)

6
− 36

n2
· n(n+ 1)

2
+

15

n
n

=
27n(n+ 1)(2n+ 1)− 108n2(n+ 1) + 90n3

6n3

=
36n3 − 27n2 + 27n

6n3

=
12n3 − 9n2 + 9n

2n3

(e) Calculate lim
n→∞

S?
Pn

(f). This number will be the exact value of

∫ 1

−2
(x2 + 1)dx.

Method 1: with the simplified form.

lim
n→∞

S?
Pn

(f) = lim
n→∞

12n3 − 9n2 + 9n

2n3

=
12

2
= 6

Method 2: without the simplified form.

lim
n→∞

S?
Pn

(f) = lim
n→∞

(
27

n3
· n(n+ 1)(2n+ 1)

6
− 36

n2
· n(n+ 1)

2
+ 15

)
=

27 · 2
6
− 36

2
+ 15

= 9− 18 + 15

= 6



Hence ∫ 1

−2
(x2 + 1)dx = 6

(f) (Do not submit.) Now repeat all the previous steps using left endpoints in-
stead of right endpoints. You should get the exact same final answer.

S?
Pn

(f) =
n∑

i=1

(
(xi − xi−1)f(x?i )

)
=

n∑
i=1

(
(xi − xi−1)f(xi−1)

)
=

n∑
i=1

( 3

n
f

(
−2 +

3(i− 1)

n

))
=

3

n

n∑
i=1

((
−2 +

3(i− 1)

n

)2

+ 1

)

=
3

n

n∑
i=1

(
9i2

n2
− 18i

n2
− 12i

n
+

9

n2
+

12

n
+ 5

)
=

27

n3
· n(n+ 1)(2n+ 1)

6
− 54

n3
· n(n+ 1)

2
− 36

n2
· n(n+ 1)

2
+

27

n3
n+

36

n2
n+

15

n
· n

Hence

lim
n→∞

S?
Pn

(f) =
27 · 2

6
− 0− 36

2
+ 0 + 0 + 15 = 6

(g) (Do not submit.) Verify that your answer is correct using antiderivatives and
FTC 2. ∫ 1

−2
(x2 + 1)dx =

[
x3

3
+ x

]1
−2

=
1

3
+ 1 +

8

3
+ 2 = 6


