
MAT 137Y: Calculus!
Problem Set 4

Due on Thursday, November 22 by 11:59pm via crowdmark

Instructions:

• You will need to submit your solutions electronically. For instructions,
see http://uoft.me/CM137 . Make sure you understand how to submit
and that you try the system ahead of time. If you leave it for the last
minute and you run into technical problems, you will be late. There are
no extensions for any reason.

• You will need to submit your answer to each question separately.

• This problem set is about implicit differentiation, inverse functions, and
inverse trigonometric functions (Playlists 3 and 4).

1. Let a, b > 0. We want to study the curve with equation

(x2 + y2)2 = ax2 + by2.

Notice that for each value of a and each value of b we get a different curve. You can
see the graph on http://tinyurl.com/mat137ps4 . (Strictly speaking we should
also add the single point (0, 0) to the graph you see at that url. For the purpose of
this question, ignore the point (0, 0).) You will find two sliders that allow you to
change the values of a and b and see what happens to the graph.

(a) First, let’s fix a = 6 and b = 1. Prove that the curve has exactly 6 points with
a horizontal tangent line and find their coordinates.

Hint: Use implicit differentiation.

We are looking for points on the curve

(x2 + y2)2 = 6x2 + y2 (1)

such that dy
dx

= 0 (we see y as a function of x locally around any point of the
curve).
Hence we have to solve the following system (i.e. we are looking for points (x, y)
satisfying simultaneously both following equations),{

(x2 + y2)2 = 6x2 + y2
dy
dx

= 0



The first equation ensures that we are looking at points on the curve, and the
second that the tangent is horizontal at this point.
By differentiating (1) with respect to x, we obtain

2

(
2x+ 2y

dy

dx

)
(x2 + y2) = 12x+ 2y

dy

dx

⇔ 4y(x2 + y2)
dy

dx
− 2y

dy

dx
= 12x− 4x(x2 + y2)

⇔ y

(
x2 + y2 − 1

2

)
dy

dx
= x(3− x2 − y2)

⇔ dy

dx
=

x(3− x2 − y2)
y
(
x2 + y2 − 1

2

)
Hence dy

dx
= 0 if and only if x(3−x2−y2) = 0 if and only if x = 0 or x2+y2 = 3.

i. First case: Assume that x = 0.
Hence, by substituting x = 0 in (1), we obtain

y4 = y2

⇔ y2(y2 − 1) = 0

⇔ y2 = 1 (Indeed, we assumed that (x, y) 6= (0, 0) in the question)

⇔ y = −1 or y = 1

Hence, we obtained the points (0,−1) and (0, 1).

ii. Second case: Assume that x2 + y2 = 3.
Then, by substituting x2 + y2 = 3 in (1), we obtain:

(x2 + y2)2 = 6x2 + y2 = 5x2 + x2 + y2

⇔ 32 = 5x2 + 3

⇔ x2 =
6

5

By substituting the above in x2 + y2 = 3, we get

y2 = 3− 6

5
=

9

5

Hence we obtained the four points
(
±
√

6
5
,±
√

9
5

)
Conclusion: for a = 6 and b = 1, the curve admits exactly 6 points with a
horizontal tangent line, which are

(0,−1), (0, 1),
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√
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5

)
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−
√
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,

√
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5
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(√
6

5
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√
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5
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9
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)



(b) Keep a = 6 and b = 1. Prove that the curve has exactly 2 points with a vertical
tangent line and find their coordinates. Notice that it is not enough to find
these points: we also want you to prove algebraically that it has no others.

Hint: Use implicit differentiation, thinking of x as a function of y.

Similarly to the above question, we are looking for points (x, y) such that{
(x2 + y2)2 = 6x2 + y2
dx
dy

= 0

By differentiating (1) with respect to y, we obtain

2

(
2x

dx

dy
+ 2y

)
(x2 + y2) = 12x

dx

dy
+ 2y

⇔ dx

dy
=
y(1

2
− (x2 + y2))

x(x2 + y2 − 3)

Hence dx
dy

vanishes if and only if y = 0 or x2 + y2 = 1
2
.

i. First case: y = 0.
By substituting y = 0 in (1), we obtain

x4 = 6x2

⇔ x2(x2 − 6) = 0

⇔ x2 = 6 (Indeed, we assumed that (x, y) 6= (0, 0) in the question)

So we obtained two points (−
√

6, 0) and (
√

6, 0).

ii. Second case: x2 + y2 = 1
2
.

We substitute x2 + y2 = 1
2

in (1) and we obtain

(x2 + y2)2 = 6x2 + y2 = 5x2 + x2 + y2

⇔
(

1

2

)2

= 5x2 +
1

2

⇔ x2 =
1

20
− 1

10
= − 1

20
< 0

Since x2 ≥ 0, there is no point on the curve satisfying x2 + y2 = 1
2
.

Conclusion: for a = 6 and b = 1, the curve admits exactly 2 points with a
vertical tangent line, which are (−

√
6, 0) and (

√
6, 0).



(c) Now play with the sliders and try different values of a and b. You will notice
that sometimes the curve has exactly 2 points with a horizontal tangent line,
and sometimes it has exactly 6 points with a horizontal tangent line. For which
values of a and b does it have 6 and for which values does it have 2? Prove it.

Now, we want to find points (x, y) such that{
(x2 + y2)2 = ax2 + by2
dy
dx

= 0

for arbitrary a, b > 0.

By differentiating
(x2 + y2)2 = ax2 + by2 (2)

with respect to x, we obtain:

2

(
2x+ 2y

dy

dx

)
(x2 + y2) = 2ax+ 2by

dy

dx

or equivalently,
dy

dx
=
x
(
a
2
− (x2 + y2)

)
y
(
(x2 + y2)− b

2

)
Hence, dy

dx
vanishes if and only if x = 0 or x2 + y2 = a

2
.

i. First case: x = 0.
By substituting x = 0 in (2), we obtain

y4 = by2

⇔ y2(y2 − b) = 0

⇔ y2 = b (Indeed, we assumed that (x, y) 6= (0, 0) in the question)

⇔ y = −
√
b or y =

√
b

Hence the points (0,−
√
b) and (0,

√
b) admit a horizontal tangent line.

ii. Second case: x2 + y2 = a
2
.

By substituting x2 + y2 = a
2

in (2), we obtain

(x2 + y2)2 = ax2 + by2

⇔
(a

2

)2
= a

(a
2
− y2

)
+ by2 =

a2

2
+ (b− a)y2

⇔ a2 = 4(a− b)y2



If a ≤ b then a2 ≤ 0 which is not possible (a2 can’t vanish since a > 0).
Otherwise, if a > b, we have y2 = a2

4(a−b) > 0.

By substituting the above in x2 + y2 = a
2
, we obtain

x2 =
a

2
− a2

4(a− b)
= (a− 2b)

a

4(a− b)

If a = 2b, then x = 0 and this case has already been treated.
If a < 2b, then x2 < 0 which is not possible, and, under this assumption
this case doesn’t produce new points with a horizontal tangent line.
If a > 2b, then we have 4 additional distinct points admitting a horizontal

tangent line, whose coordinates are
(
±
√

a(a−2b)
4(a−b) ,±

a
2
√
a−b

)
.

Conclusion: the curve admits exactly 6 points with a horizontal line if a > 2b,
and exactly 2 points with a horizontal line if a ≤ 2b.

(d) [Do not submit.] Repeat Question 1c for points with a vertical tangent line,
instead of a horizontal tangent line.

Hint: You can use a symmetry argument and your solution to 1c to answer this
question without having to do any calculations.

Notice that if we set x̃ = y and ỹ = x then (2) becomes

(x̃2 + ỹ2)2 = bx̃2 + aỹ2

Hence, by symmetry with respect to the line y = x, the curve admits exactly 6
points with a vertical line if b > 2a, and exactly 2 points with a horizontal line
if b ≤ 2a.



2. Let us consider the function f defined by f(x) = sinx. It is not one-to-one. For each
a ∈ R we defined Ia to be the largest interval containing a such that the restriction
of f to Ia is one-to-one.

y = sin(x)

π
2

π
2

+ π π
2

+ 2ππ
2

− ππ
2

− 2ππ
2

− 3π

(a) There are some values of a ∈ R for which the above definition does not make
sense: the interval Ia is not well-defined. What are these values?

During this question, I will use several times the following fact:

Let I be an interval. If there exists n ∈ Z such that π
2

+nπ is an interior
point of I, then sin isn’t one-to-one on I.

(∗)

Indeed, if there exists n ∈ Z such that π
2

+ nπ is an interior point of I, then
there exists ε > 0 such that π

2
+ nπ − ε and π

2
+ nπ + ε are both in I. But

sin
(π

2
+ nπ + ε

)
= (−1)n cos(ε) = (−1)n cos(−ε) = sin

(π
2

+ nπ − ε
)

So sin isn’t one-to-one on I. �

Let a ∈ R.
Assume that a = π

2
+ nπ for some n ∈ Z.

According to (∗), a has to be an endpoint of Ia.
Notice that sin is one-to-one on

[
π
2

+ nπ, π
2

+ (n+ 1)π
]

and on
[
π
2

+ (n− 1)π, π
2

+ nπ
]

by (strict) monotoniticity of sin on these intervals.
Both of these intervals are of length π and can’t be extended without loosing
the injectiveness because of (∗).
Hence Ia is not uniquely defined in this case.

Assume that a ∈ R \
{
π
2

+ kπ, k ∈ Z
}

.
Let n =

⌊
a
π
− 1

2

⌋
and let Ia =

[
π
2

+ nπ, π
2

+ (n+ 1)π
]
.

Then a is an interior point of Ia, sin is one-to-one on Ia by strict monotoniticity
and Ia can’t be extended without loosing the injectiveness because of (∗).
Hence Ia is the largest interval containing a such that sin is one-to-one on Ia.

Conclusion: the interval Ia is well defined if and only if a ∈ R\
{
π
2

+ kπ, k ∈ Z
}

.
And the Ia are exactly the intervals

[
π
2

+ nπ, π
2

+ (n+ 1)π
]

for n ∈ Z.



(b) There may be different values of a ∈ R that produce the same interval Ia. What
is the largest number of integers a ∈ Z such that they all produce the same
interval Ia? (If you think the answer is n, you need to find n such integers as
an example, and justify why it is impossible to find more than n.)

The largest number of integers in an interval Ia is 4.
Let’s prove it!.

• According to the above question I11 = I12 = I13 = I14.
Indeed, π

2
+3π < 11 and 14 < π

2
+4π, so {11, 12, 13, 14} ⊂

(
π
2

+ 3π, π
2

+ 4π
)

So we can find an interval Ia produced by at least 4 different integers.

• Assume by contradiction there exists an interval Ia produced by at least
five distinct integers.
Then Ia contains at least 5 consecutive integers and its length is at least 4.
Which is not possible since, according to the previous question, the length
of an interval Ia is exactly π.

Which ends the proof.



(c) Construct a set A ⊆ R such that any two different elements of A produce dif-
ferent intervals, and all possible interval Ia are produced by some element in A.
We call this set a “complete list of representatives”.1

Let A = {kπ, k ∈ Z}.
Let’s prove that A is a suitable complete list of representatives.

• Step 1: for any a ∈ A, the interval Ia is well defined.
Let a ∈ A, then there exists k ∈ Z such that a = kπ.
Assume by contradiction, there exists n ∈ Z such that a = π

2
+ nπ.

Then

kπ =
π

2
+ nπ

⇔ k =
1

2
+ n

⇔ 1

2
= k − n

So that 1
2
∈ Z, which is impossible.

Hence, A ⊂ R \
{
π
2

+ nπ, nZ
}

.
Therefore, according to question 1, Ia is well defined for a ∈ A.

• Step 2: two different elements of A produce different intervals.
Assume there exist k, k′ ∈ Z and a ∈ R such that kπ, k′π ∈ Ia.
We have sin(kπ) = sin(k′π) = 0.
Since sin is one-to-one on Ia, we obtain that kπ = k′π and k = k′.

• Step 3: any interval Ia is produced by an element of A.
According to the first answer, the intervals Ia are exactly the intervals[
π
2

+ nπ, π
2

+ (n+ 1)π
]

for n ∈ Z.
Let fix such an interval

[
π
2

+ nπ, π
2

+ (n+ 1)π
]

(or equivalently such an n).
Notice that

π

2
+ nπ =

(
n+

1

2

)
π < (n+ 1)π <

(
n+

3

2

)
π =

π

2
+ (n+ 1)π

So that
[
π
2

+ nπ, π
2

+ (n+ 1)π
]

= I(n+1)π and (n+ 1)π ∈ A.

1A more formal way to say this is that ∀b ∈ R for which the interval Ib is well defined, there exists
exactly one a ∈ A such that Ia = Ib.



(d) For each a ∈ A, let us call ♥a the inverse function of the restriction of f to Ia.
What are the domain and the range of ♥a? Sketch its graph (labelling the axes
properly).

Let a ∈ A. Then there exists n ∈ Z such that a = nπ.
According to the previous questions, Ia =

[
π
2

+ (n− 1)π, π
2

+ nπ
]
.

• We know that the restriction of sin to Ia is one-to-one.

• Moreover the range of this restriction is [−1, 1].
Indeed, let c ∈ [−1, 1].
We know that

– sin is continuous on Ia =
[
π
2

+ (n− 1)π, π
2

+ nπ
]
,

– if n is even then sin
(
π
2

+ (n− 1)π
)

= −1 and sin
(
π
2

+ nπ
)

= 1,

– if n is odd then sin
(
π
2

+ (n− 1)π
)

= 1 and sin
(
π
2

+ nπ
)

= −1.

Hence, according to the IVT, there exists x ∈ Ia such that sin(x) = c.

Hence the restriction of sin to Ia admits an inverse ♥a whose domain is [−1, 1]
and whose range is Ia.

If n is even:

x

y

y = sin(x)

y = ♥a(x)

π
2

+ (n− 1)π π
2

+ nπ

π
2

+ (n− 1)π

π
2

+ nπ

1

−1

1−1

If n is odd:

x

y

y = sin(x)

y = ♥a(x)

π
2

+ (n− 1)π π
2

+ nπ

π
2

+ (n− 1)π

π
2

+ nπ

1

−1
1−1



The following observation, if proven, can simplify the answers of the following
questions!

Assume that a = nπ for n ∈ Z, then

♥a(x) = (−1)n arcsin(x) + nπ

Indeed, define g : [−1, 1]→ Ia by g(x) = (−1)n arcsin(x) + nπ.

Then ∀x ∈ [−1, 1],

sin(g(x)) = sin((−1)n arcsin(x) + nπ)

= (−1)n sin((−1)n arcsin(x))

= (−1)2n sin(arcsin(x))

= sin(arcsin(x))

= x

And, ∀x ∈ Ia =
[
π
2

+ (n− 1)π, π
2

+ nπ
]
,

g(sin(x)) = (−1)n arcsin(sin(x)) + nπ

= arcsin((−1)n sin(x)) + nπ

= arcsin(sin(x− nπ)) + nπ

= x− nπ + nπ since x− nπ ∈
[
−π

2
,
π

2

]
.

= x

�



(e) For each a ∈ A, compute ♥a(f(2018)) and f(♥a(2018)). Or, if they are not
defined, explain why.

• Notice that 2018 /∈ [−1, 1] so ∀a ∈ A, f(♥a(2018)) isn’t define.

• Let a ∈ A. There exists n ∈ Z such that a = nπ.
We are going to prove that ♥a(sin(2018)) = (−1)n(2018− 642π) + nπ.

– Method 1:
Notice that 2018− 642π ∈

[
−π

2
, π
2

]
so that 2018− 642π + nπ ∈ Ia.

Then

sin(2018) = (−1)n−642 sin(2018− 642π + nπ)

= (−1)n sin(2018− 642π + nπ)

Hence, if n is even,

♥a(sin(2018)) = ♥a(sin(2018− 642π + nπ)) = 2018− 642π + nπ

Otherwise, if n is odd,

♥a(sin(2018)) = ♥a(− sin(2018− 642π + nπ))

= ♥a(sin(−2018 + 642π − nπ))

= ♥a(sin(−2018 + 642π − nπ + 2nπ))

= ♥a(sin(−2018 + 642π + nπ))

= −(2018− 642π) + nπ

Indeed, −2018 + 642π + nπ ∈ Ia since −2018 + 642π ∈
[
−π

2
, π
2

]
.

Finally, we may conclude that if a = nπ then

♥a(sin(2018)) = (−1)n(2018− 642π) + nπ

– Method 2, using the above observation:

♥a(sin(2018)) = (−1)n arcsin(sin(2018)) + nπ

= (−1)n(2018− 642π) + nπ



(f) For each a ∈ A, derive an explicit formula for ♥′a.
Hint: Imitate the derivation in Video 4.7. Notice that it is not exactly the same.

Let a ∈ A. There exists n ∈ Z such that a = nπ.

• Method 1:
For all x ∈ (−1, 1), we have sin(♥a(x)) = x.
By differentiating with respect to x, we obtain:

♥′a(x) sin′(♥a(x)) = 1

⇔ ♥′a(x) cos(♥a(x)) = 1

⇔ ♥′a(x) =
1

cos(♥a(x))

Notice that we need to work with the open interval (−1, 1) since cos(♥a(x)) =
0 at −1, 1.

We derive from cos2(♥a(x)) + sin2(♥a(x)) = 1 that

cos(♥a(x)) = ±
√

1− sin2(♥a(x)) = ±
√

1− x2

If n is even, then cos is positive on
(
π
2

+ (n− 1)π, π
2

+ nπ
)

so that cos(♥a(x)) =√
1− x2.

Otherwise, if n is odd, then cos is negative on
(
π
2

+ (n− 1)π, π
2

+ nπ
)

so

that cos(♥a(x)) = −
√

1− x2.

Finally, cos(♥a(x)) = (−1)n
√

1− x2, and

♥′a(x) =
(−1)n√
1− x2

• Method 2, using the above observation:
♥′a(x) = d(−1)n arcsin(x)+nπ

dx
= (−1)n arcsin′(x) = (−1)n√

1−x2 .


