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Calculus Review: The Intermediate Value Theorem

If a function f(x) is continuous on the closed interval [a, b] then it
has no discontinuities; that is, the graph of the function has no
holes, jumps or vertical asymptotes. Putting it another way, the
graph of y = f(x) must be a single curve, with no gaps in it. To
draw it, your pencil would never leave the paper. The Intermediate
Value Theorem is a mathematical restatement of this idea:

If f is a continuous function on the closed interval [a, b]

and K is any value between f(a) and f(b), then there is

a number c in the interval (a, b) such that f(c) = K.

K is called an intermediate value. IVT says that every continuous
function on a closed interval must pass every intermediate value.
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Picture for IVT

» If f is continuous on the
closed interval [a, b]

4 d
> an
() y = f(x)
f(a) < K < f(b),
K y=K
or
f(a) > K > f(b),
f(a) T > then there is a number ¢ in
the interval [a, b] such that
a c b X f(c) = K.
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The Fixed Point Theorem

If F : [a,b] — [a, b] is a continuous function on the
closed interval [a, b] then F has at least one fixed point
in the interval [a, b].

Proof: Let h(x) = F(x) — x; then h is a continuous function on
[a, b] and

h(a) = F(a) — a > 0 because F(a) > a;
and
h(b) = F(b) — b < 0 because F(b) < b.

By the Intermediate Value Theorem applied to h on [a, b], there is
a number ¢ € [a, b] such that

h(c)=0< F(c)=c.
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Remarks About the Fixed Point Theorem

1. The theorem states F has at least one fixed point in [a, b];
there could be more than one.

2. The Fixed Point Theorem only applies to a continuous
function which maps the interval [a, b] into itself. One
frequent detail we will have to check in this course is if a
function’s range is contained in its domain.

3. The Fixed Point Theorem assumes F is continuous on a
closed interval; the result may or may not hold true if the
domain of F is not a closed interval.

4. The Fixed Point Theorem is an existence theorem: it doesn't
indicate what the fixed point is.
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Two Types of Fixed Points

The function F(x) = x? has two fixed points, x = 0 and x = 1.
Orbits of xg under F behave markedly differently depending on
which point xp is close to.

If xo > 1 then the orbit of xg ]
under F tends to infinity. o]

F.
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Attracting and Repelling Fixed Points

On the other hand if |xg| < 1 then orbits of xo under F tend to 0.

[T TT 1T I"/ﬂ L !
-0 - 1]/uu 05 10
0.2+

Figure: —1 < x9 <0 Figure: 0 < xp <1

We call 0 an attracting fixed point; we call 1 a repelling fixed point.
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Examples

Let L(x) = mx. The only fixed point of L is x = 0. Whether or not
x = 0 is an attracting fixed point or a repelling fixed point depends
on m, the slope of L. Here are four examples:

=

b

TITTTTTTT T TT1
o 02s 0s

(I L L N TTTT [T T TT[TTT11
-05 -0.25 05

e

=

I Y Y T Y I A

Figure: m=1.4;x = 0.1 Figure: m=0.6;xp = 0.6
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Figure: m= —1.4;x = 0.1 Figure: m= —0.6;xp = 0.6

If |L’(0)] > 1 then x = 0 is a repelling fixed point; if |L'(0)| < 1
then x = 0 is an attracting fixed point. Consequently, we make the
following definition .. ..
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Definition of Attracting and Repelling Fixed Points

Definition: Suppose p is a fixed point of F. Then
1. pis an attracting fixed point of F if |[F/(p)| < 1;
2. pis a repelling fixed point of F if |[F'(p)| > 1;

3. pis a neutral fixed point of F if |[F'(p)| = 1. A neutral fixed
point is sometimes called an indifferent fixed point.
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Example 1

Let C(x) = cos x. C has a single fixed
point p in the interval [0,7/2]. It is
an attracting fixed point since -

in
|

C'(p)] = | —sinp| < 1.

0.75

We already know

0.5

p = 0.739085133...

0.25

=
=

At right is the cobweb representation
of the orbit of xg = 0.1 under C.
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Example 2

Let F(x) = 2(sin x)?. Its graph is below; there are 3 fixed points.

e F'(x) = 4sin x cos x = 2sin 2x.

2.05 Then

15 IF/(x)|]<1 & [2sin2x| <1
. 1

1.0 = 1 2 —
: | sin 2x| < >

0.5? o ‘X‘ < (0

D.u:|"'|.||||||||||||||||||||||||||.\|\"|'| 12
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So the only attracting fixed point of F is x = 0.
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Figure: xp = —0.4 Figure: xp = 0.4
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The Repelling Fixed Points of Example 2

1 2.0
E 1.3:
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Figure: xop = 0.4 Figure: xo = 0.7
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Figure: xo = 0.7 Figure: xp = 2.1

The third fixed point is also repelling, but the orbits do not tend to
infinity. They seem to tend towards a cycle of period 2.
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Both of the following graphical representations show that the orbit
of xo = 1.8 under F is not attracted to the fixed point at
approximately p = 1.85, but is repelled from it to an apparent
2-cycle.
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Example 3: F(x) = 2x — 2x2.

Fix)=xex=2x>4<x=0o0r x=1/2,and F'(x) =2 —4x. So
x = 0 is a repelling fixed point and x = 1/2 is an attracting fixed

point.
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Example 4: F(x) = x — x*.

Then F(x) =x & x> =0« x=0; and F'(x) =1 — 2x.
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Now F’(0) = 1; so the only
fixed point of F is a neutral
fixed point. )
If xo = .4, the orbit of xg under -u'_'s"_'u'_g"sf’_"
F is attracted to O. /
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But if xp = —0.1, then the orbit of xg under F is repelled from O:

=
P
h

=
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g

There are many other possibilities for orbits of seeds close to a
neutral fixed point! See the examples in the book, and the
exercises.
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Calculus Review: The Mean Value Theorem

Let f be continuous on [a, b], differentiable on (a, b).

Then there is a number ¢ € (a, b) 4
such that
f(b) — f(a)
f'(c) = :
(c) P

a c b x

Whether or not a fixed point is attracting or repelling is a
consequence of the Mean Value Theorem.
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Attracting Fixed Point Theorem

Suppose p is an attracting fixed point for F. There is an
interval | that contains p in its interior such that if xy is
any point in | then

1. xp = F"(x0) isin I;

2. lim x, = p.
n—oo

That is, for all xy sufficiently close to the attracting fixed
point p, every orbit of xg under F converges to p.
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Proof of the Attracting Fixed Point Theroem

Since |F'(p)| < 1, there is a number X such that 0 < A < 1 and a
number d > 0 such

xelp—06p+d=|F(x)) <A<
Let | =[p—9,p+ 4], and let xp € I.

p—0 Xo p x1 p+9
L L

By MVT there is a number x € [ such that

[F(x0) — F(p)| = [F'(x)Ilx0 — p| < Alxo — p|
= |x1 — p| < Alxo — pl

That is, x7 is closer to p than xg is, since A < 1.
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Since x7 is also in /, repeat the above argument to conclude that
x2 — pl < Alxa = pl = |x2 = p| < N|x0 — pl.
By repeatedly using the same argument, for any n > 0: x, € | and
xn — Pl < A"x0 — pl.
This means the orbit of xp under F is entirely in the interval | and
lim x, = p,
n—o0

since \ < 1.
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Repelling Fixed Point Theorem

Suppose p is a repelling fixed point for F. There is an
interval | that contains p in its interior such that if
x € l,x # p, then |F(x) — p| > |x — p|.

Proof: |F'(p)| > 1, so there are numbers A\ and § such that
F'(p) > A > 1,

and x € [p—d,p+0]=|F(x)|>A>1 Let I =[p—9,p+9],
and let x € [. By MVT there is a number ¢ € | such that

[F(x)=F(p)l = [F'()llx—pl = Alx=p| = [F(x)—p| = Alx—pl.
Since A > 1 it follows that |F(x) — p| > |x — p.
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Consequences of the Repelling Fixed Point Theorem

1. That is, F(x) is farther from p then x is. So no matter how
close x, # p is to p, x,+1 = F(x,) is farther from p.

2. Indeed, as Devaney points out: if xg is any point in /, xp # p,
then there is an integer n > 0 such that

xn = F"(x0) ¢ I.

That is, for all xp sufficiently close to but not equal to the
repelling fixed point p, the orbit of xg under F cannot remain
in the interval /. Why? If xg,x1,...,x, are all in [ then, by
repeating the argument in the proof above n times,

|xn — p| > A"|x0 — p|. For n big enough A\"|xg — p| will be
greater than the length of the interval /; since A > 1. Thus
not every point in the orbit of xy under F can be in /.
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Example 1: An Attracting 2-Cycle

1++5

Let F(x) = x2 — 1. It has two fixed points, x = 5

But both fixed points are re-
pelling, since F'(x) = 2x and

1+ Thelim i o .:'LI;".’“FW.H“
F' (_ﬁ) > 1. —t

=

Ko
n

=
TS T T T T T T 77T

2

'
="
in

=

What happens to the orbit of
Xo = 0.75 under F?

wn

It seems to be attracted to the 2-cylce 0, —1. Why?
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Example 1, Continued

F2(x) = (x> = 1)2 — 1 = x* — 2x?;

F2 (x) =x 1]

Xt 2x2 _x=0 o4

L I 5 e I e |
-2 -1 5 \ F 2

& X:O)X: —1,X: T\/_ / -LSE

(F2Y(x) = 4x — 4x = (F?)/(0) = 0, (F?)/(~1) = 0, and

¢

1++5
(F?) (T\/_> = 6 + 2v/5. So the only attracting fixed points of

F2 are x =0 and x = —1.
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Example 1, Continued
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Figure: Orbit of xg = 0.75 under Figure: Orbit of xg = —0.4375
F? converges to —1. under F? converges to 0.
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Example 1, Concluded

The orbit of xg = .75 under F? converges to —1; but the orbit of
x1 = F(0.75) = —0.4375 under F? converges to 0. That is, orbits
under F2 are attracted to the fixed points of F2. However, orbits
under F will cycle back and forth as they converge to the 2-cycle
consisting of the attracting fixed points of F2.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla




5.1 A Fixed Point Theorem
- Lo . 5.2 Attraction and Repulsion
Chapter 5: Fixed and Periodic points 5.3 Calculus of Fixed Points
5.4 Why Is This True?

5.5 Periodic Points

Chain Rule Along a Cycle

A simple chain rule calculation gives the key to determining if an
n-cycle of F is attracting or repelling. Suppose xg, x1,...,Xn_1,
with x; = F'(xp), lie on a cycle of period n for F. Then

(F)(x) = (FoF" ") (x)

"(F" (%)) (F") (%)
'(xn-1)(F 0 F"~%)/(x0)
'(xn-1)F'(F"*(x0))(F"2) (x0)
(Xn-1)F' (xn—2)(F © F")'(x0)

M M M

/

|
ﬁ

— F,(Xn_l)F/(Xn_2) ce F/(XQ)F/(Xl)F,(XO)

Note: (F")(x;) is the same for any point on the n-cycle.
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Types of Cycles

Suppose Xg, X1, . . ., Xn_1, With x; = F'(xg), lie on a cycle of period
n for F. Let x; be any point in the n-cycle, 0 </ < n—1.

1. The cycle is attracting if |(F")'(x;)| < 1. That is
‘F/(Xn_l)F,(Xn_z) . F/(XQ)F/(Xl)F/(Xo)‘ < 1.
2. The cycle is repelling if |(F")'(x;)| > 1. That is
|F'(xn—1)F'(xn—2) . . . F'(x2) F'(x1) F'(x0)| > 1.
3. The cycle is neutral if |(F")'(x;)| = 1. That is

|F'(xn—1)F'(xn-2) - - . F'(x2) F'(x1)F'(x0)| = 1.
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Example 2

Let F(x) = x> — 1, as in Example 1. F has a 2-cycle 0 and —1
since

F(0)= —1 and F(~1) = 0.
F'(x) = 2x, so

FI(0)F'(-1) = (0)(-2) =0 < 1,

and the 2-cycle is attracting.
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Example 3

3 5
Let F(x) = —§x2 + 5% + 1. F has a 3-cycle 0,1 and 2 since

F(0)=1,F(1) =2, and F(2) = 0.

5
F'(x) = —3x + 57 0

FI0)F/(1)F(2) = (g) (—%) (—%) _ %5 51,

and the 3-cycle is repelling.
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An Orbit For Example 3

Here is the orbit of xg = 0.1 under F. Even though the seed is
close to the periodic point 0, the orbit does not tend toward the
3-cycle, even after 200 iterations:
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- a a a
0] z % @ @ e
: a a a
ol L o 7 ] @
- @ =
06— a % o w0y
— o
04—
- 9 ©
a @
0.2— @ 3
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Example 4

Even though the doubling function D has many cycles every one of
them must be repelling. Why? Recall

D:[0,1) — [0,1)
by

2x if

D=9 ox_1 i

Nl—= O
IA IA
X X
ANAN
e

So )
D'(x) =2, if x # 5

If xg is any periodic point with prime period n, then

(D"Y (x0) = 2" > 1.
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Chapter 6: Bifurcations 6.3 The Period-Doubling Bifurcation

The Quadratic Map Q.

Let
Qc(x) = x* + ¢,

where ¢ is a constant. For each different value of ¢ we get a
different dynamical system Q.. In Chapters 6 to 10 we shall do a
thorough analysis of the different dynamical systems Q. as the
parameter ¢ varies. And to end the course, in Chapters 16 and 17,
we will look at the quadratic map again, but as a function of a
complex variable z:

Qc(z) = 22 + ¢,

where ¢ will be a complex number. But for the moment we limit
ourselves to real variables x and real numbers c.
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The Fixed Points of Q..

Qe(x)=x & x*+c=x
= X2—X—|—C:O

1++v1—-4c

Rt =
X 2

Let

1+\/1—4caCI 1—-+v1—4c
nd p_ = )
2 2

Py =

There are three cases:

1. Qc has no (real) fixed points if ¢ > 1/4

2. pr=p-=1/2ifc=1/4

3. p4 and p_ are real and distinct if ¢ < 1/4
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The Case ¢ > 1/4

In this case the graph of Q. never in-
tersects the line y = x. For any choice
of xg the orbit of xg under Q. will tend
to infinity. The graphical analysis to
the right exhibits the case for c = .5 e
and xg = 0. "

TTTT 7777
1 2

L

5
|

|
ra
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The case c =1/4

In this case there is only one fixed point, p =1/2, and it is a
neutral fixed point since Q¢(x) = 2x = Q¢(1/2) = 1.

n
|

= = 2
n w o=
| |

=

in
T T Y I

3 7 g
04—
i e
S 03 1o
7
/,
/

0.1 0.5 7
']‘25” II;]DH I IDIZS‘ ; IDISI ‘ Hul?s |II‘1I_'/I.I\\\\\II|IIII|
-"’O'It 0s o do 05 10 15
0.2 s
. -0.54
Figure: xo =0 Figure: xo = 0.6
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The Case c < 1/4

Since QL(x) = 2x we have
Ql(py)=2pL =1++V1—4c>1.
So py is always a repelling fixed point for Q.. On the other hand,
Q.(p-)=2p- =1—+V1—4c.

Thus p_ will be attracting for some values of ¢ and repelling for
others. Some terminology: the quadratic family Q. has a tangent,
or saddle-node, bifurcation at ¢ = 1/4. That is, for ¢ > 1/4 there
are no fixed points for Q; at ¢ = 1/4 there is a neutral fixed point
for Qc; and if ¢ < 1/4 there are two fixed points for Q., one
attracting and one repelling.
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The Fixed Point p_ with ¢ < 1/4

1. p_ is an attracting fixed point for Q. if

QLp ) <1 & —-1<1-+v1-4c<1
& —2<—/1—4c<0
& 2>vV1—-4c>0
= 4>1—4c>0
& 3> —4c> -1
& —3/4<c<1/4

2. p_ is a neutral fixed point for Q. if c = —3/4
3. p_ is a repelling fixed point for C. if ¢ < —3/4.
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The Interval [—p,, py], for c < 1/4

Since Qc(—x) = Q(x), the fate of any orbit of —xp under Q. is
always the same as the fate of the orbit of xg under Q.. In
particular,

Qc(_p+) = Qc(p—l—) = P+,
so —p4 is an eventual fixed point for Q.. We have seen that for
Xo > p+ the orbit of xp under Q. tends to infinity. Likewise, if
Xp < —p+ the orbit of xg under Q. will also tend to infinity. Thus
for any seed

xo & [=p+, p+]

the orbit under Q. tends to infinity. The next slide illustrates this
result for the case ¢ = —1/4 and |xp| = 1.25. Aside: if c = —1/4,

_ # ~1.01.

P+
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P .o
T

[TATTTTTT 'q,_é_%""l""l
-15]-1.0 -05% T 0% 10 15

Figure: ¢ = —1/4;x0 = —1.25 Figure: ¢ = —1/4;x) = 1.25
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If xo € [—p, ps], for c < 1/4.

6.1
6.2
6.3

Dynamics of the Quadratic Map
The Saddle-Node Bifurcation
The Period-Doubling Bifurcation

All of the interesting dynamics occurs if xp € [—p4, p+], for

¢ < 1/4. Note that

1—-+vV1—-4c

p- = 5

S [_p—l-a p+]7

for ¢ < 1/4. But, as we have seen above, p_ is only an attracting

fixed point if

3 1
—— < c< .

4

4

It can be proved that if —3/4 < ¢ < 1/4 and xp € [—p4+, p+], then
the orbit of xg under Q. converges to the fixed point p_. Two
examples are illustrated in the next slide.
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I I I |
1.0

.||||
/.5

Figure: ¢ = —1/4;x =0.9

6.1
6.2
6.3
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-1.0 -0.5 ] 0.5 1.0

Figure: ¢ =1/8;x = 0.8
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An Attracting 2-Cycle

What happens if ¢ < —3/47 Here are two graphical representations
of the orbit of xp = 0 under Q_4/5:

0 10 20 kL] 40 50
% S O O N O B Y B
-0.08— =
-0.16] ]

| 1.0
0,24 oy m

a S SR S S e 8 i
-0.32— =
04— -

4 TTTTT T TT T T[T T TATTTTIT]
_04a— 15 qo0 05 S1n 15
-0.56— B
-0.64— 1.0
_u_?z—_ e ML S TGRS A 155
-0E—e A
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Here are two more graphical representations, of the orbit of xg =0
under Q_g/s:

0.25H 2.0—
) RO J
- iy ° E e folo0oegogeq e
T ° 10 20 30 40 50 1.6+ o
0 T T O T T Al ot
T 1.2+ &
3 E o
- 0.8+
0.25— g i
05
- 15 i] 15
-5
1.0 4
] - i
oo . -1.E—
1 P RS R R T R T T il

For both values, c = —4/5 or ¢ = —6/5, the orbit appears to
converge to an attracting 2-cycle. Why should this be?
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Points of Prime Period 2, ¢ < —3/4

R(x)=x & (X¥*+c)P+c=x
s xX42ex° —x+c+c=0
& (2 =x+)(x*+x+c+1)=0 (Why?)
—-1++v—-3—-4c
&S X=p_,X=pgorx= 5
Let

—1—-+v-3—-4c -1+ +v—-3—4c

q_: 2 ) q+: 2 *

Check that Q/(g-)Q.(g+) = 4 + 4c. Hence q_, g4 is an
attracting two cycle if

5 3
d4+4cl<lee ——<c< ——.
14 + 4c| 7 <¢ Z
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The quadratic family Q. is said to have a period-doubling
bifurcation at ¢ = —3/4. If ¢ < —5/4, then the 2-cycle g_, g+
becomes a repelling 2-cycle. The dynamics then change again:

there is another period-doubling bifurcation at ¢ = —5/4. Here is
an example, with xg = 0 and ¢ = —1.35:
0.5 o @ _
0.25: 25 /
I 2z 4 6§ 10 1z 14 16 1§ 20 B b
0.0 | | T N T YT R A T [T | 1 e
: -] - 1:
0.25— —
053 ]
]
=) 1 2
0.75—
e =]
1257 : : g
5 a [ @ 2
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Definition of a Saddle-Node Bifurcation

A one-parameter family of functions F) has a tangent, or
saddle-node, bifurcation in the open interval /| C R at the
parameter value )\ if there is an € > 0 such that

1. F), has one fixed point in / and this fixed point is neutral;

2. for all X in one half of the interval (Ag — €, A\g + €), F) has no
fixed points in /;

3. for all A in the other half of the interval (Ao — €, Ao + €), F)
has two fixed points in /, one attracting and one repelling.

Note: this definition describes a change in the fixed point structure
of F). Periodic points of F) can also have a tangent bifurcation:
replace F) with Fy for a cycle of period n in the above definition.
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Example 1

The quadratic family Q. has a tangent bifurcation at ¢p = 1/4,
since

1. @/a(x) = x>+ 1/4 has a fixed point, p = 1/2, which is a
neutral fixed point;
2. Q¢ has no fixed points for 1/4 < ¢ < o0;

3. Q¢ has two fixed points p_ and py if =3/4 < c < 1/4, of
which p_ is attracting and p is repelling.

In terms of the definition, you can take / = R and € = 1.
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Graphs for Example 1

7 1.2 ] ;
] / 104 v \ I'SE b
| 1u—: ua{ / 1u§
1 e s 3
s 04 1s]
] e N
1 T T T 7|\III7\II.‘\\I7|\II\IHIU;IH|HI\|
-1‘u"H-lgs"HEDHIIDISHHJD 05 1.0 1.5 1.U>< D\Séu‘” UE 1o 15
s ]
] 1.0
1] 15E
Figure: ¢ =1/2 Figure: c=1/4 Figure: ¢ = —1/2

From this sequence of graphs you can see why its called a tangent
bifurcation.
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Bifurcation Diagram for Example 1

For ¢ <1/4 we had

1+ 1 —4c
p_|_ — 2 i—_1..u
and
1—+1—-4c [ s
P== 2
The diagram to the right plots
p+, p— as functions of c. Figure: Bifurcation at ¢g = 1/4

This is called a bifurcation diagram.
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Example 2

Let Ex(x) = €¥ + A; this is called the exponential family. It has a

tangent bifurcation in the interval R at A = —1:
L. If A > —1 then E)(x) > x for all x, so Ey has no fixed points.
2. If A = —1 then the equation of the tangent line to E_; at
x =0is y = x. Since E’ {(0) = €® = 1, the fixed point x =0
is a neutral fixed point.

. If A < —1 then the graph of E) intersects the line with
equation y = x in two points, say p1 and py, with p; < p».
Check that: p; < 0 and py > 1;

0< Ei(p1) = e < 1;E{(p2) = e > 1;

so p;p is always an attracting fixed point, and p> is always a
repelling fixed point. In this example, any ¢ > 0 is OK.
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Chapter 6: Bifurcations 6.3

Graphs for Example 2

=20 -15 -1.0 -05 01_0405 10 15 =20 -15 -1.0 -9_.5 b__04. 2‘0”_1“5I 1‘0”_élsl

iy = L

;—12 ;12 7’-

[ oie Coie / ks

) Eesp 4 20
Figure: A =10 Figure: A = —1 Figure: A = =2

It is not easy to draw the bifurcation diagram for the exponential
family, because you can't solve for x if €4+ A = x and A\ < —1.
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Example 3

Fx(x) = Ax(1 — x), A # 0 is called the logistic family. Its fixed
points are easy to determine:

Fx(x)=x & M(1—-x)=x

& x=0orA—XAx=1

A—1 1
& x=0 =—=1-=
X or X \ )\

1
F5(0) = X and F)’\(l—x):2—>\,

as you may check. It can also be shown that for 0 < A\ < 4,

Fy :[0,1] — [0, 1].

Dynamics of the Quadratic Map

6.1
6.2 The Saddle-Node Bifurcation
6.3 The Period-Doubling Bifurcation
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If A = 1 then the only fixed point of
F)\(X) is X — 0 and it is neUtral' |f n4i0 04 08 12 1‘.&“32506;2::”2.8 32 36 40
0 < XA < 1then x = 0is an attracting "1~~~

fixed point and x =1 — — is repelling.
But if 1 < A < 3, then x = 0 is the re- 5]

1 1
pelling fixed point and x =1 — X is the .1

attracting fixed point.

According to our definition, there is no tangent bifurcation point
for the logistic family at A = 1: there are two fixed points on each
side of A = 1. It makes no difference what you choose for the open
interval | or for € > 0; you can’t arrange F) for A in one side of

(1 —€,1+ €) to have no fixed points. However it is true that F;(x)
is tangent to the line y = x at x = 0.
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Definition of a Period Doubling Bifurcation

A one-parameter family of functions F) has a period-doubling
bifurcation in the open interval | C R at the parameter value \g if
there is an € > 0 such that

1. for each A € [A\g — €, Ao + €], F) has a unique fixed point
px € 1;

2. for all A in one half of the interval (Ao — €, A\g + €), including
A = Ag, F) has no cycles of period 2 in | and p) is attracting
(resp. repelling);

3. for all X\ in the other half of the interval (Ao — €, A\g + €),
excluding A = A\, there is a unique 2-cycle q}\, q/2\ € | with
F(qy) = g3. This 2-cycle is attracting (resp. repelling).
Meanwhile, the fixed point p) is repelling (resp. attracting).

4. As A — A both g} — pa.
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Remarks About the Definition

1. At a period doubling bifurcation one of two things happens:
an attracting fixed point changes to a repelling fixed point
while at the same time giving rise to an attracting 2-cycle; or
a repelling fixed point changes to an attracting fixed point
while at the same time giving rise to a repelling 2-cycle.

2. Whereas a tangent bifurcation occurs when the graph of F) is
tangent to the line with equation y = x, a period-doubling
bifurcation occurs when the graph of F) is perpendicular to
the line with equation y = x, as will be illustrated by some
examples. This implies that the graph of Ff is tangent to the
line y = x when the bifurcation occurs:

(FZ) (o) = Fiy (Fro(Pro)) Fay (Pro) = (Fau(Pro))? = (=1)? = L.
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Example 1

The quadratic family Q. has a period doubling bifurcation at
co = —3/4. Why? Recall that

1.
1—-+vV1—-4c
p- = >
is an attracting fixed point for —3/4 < ¢ < 1/4; and that
2.

—1—-+v/—-3—-4c —1++v-3—-4c
2

qg- = 9 y 4+ =

is an attracting 2-cylce if —5/4 < ¢ < —3/4, for which p_ is
now repelling.
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The following graphical analyses illustrate how the orbit of
xo = 0.8 converges to a fixed point for Q_g¢ but is attracted to a
2-cyle for Q_gs:

///
0.4—| 7
\ oA

T I A = o I A A W |

Ao N\ s s AR RARRRARS/ANERINN
- | //
‘-m_hc_ 10
0.5 ol
T .’/ 1:5
1.0
Figure: ¢ = —0.6;xp = 0.8 Figure: ¢ = —0.8;xp = 0.8
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The Graphs of Q? for Example 1

1.5 ]
20 | ] 31
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\ ] | | 157
| | I 1
15 1.0 | 3]
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/ | 7 1.0
[ | | et
| / ]
10 | sl :! 1
| ! 1 | 05
5 | | b | ]
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7 \ & . / ) § ]
o 05 Ly 1S Y P 7 R 6 L 1o [1s
e 4 i 05 ¥ \ . s C
: ] - | \ & 054 %
3 \ 1
L :_/4// i W,
15-] ///// 1.5

Figure: ¢ = —3/5 Figure: ¢ = —3/4 Figure: ¢ = —1

033/4(X) is tangent to the line y = x at p_ = —1/2.
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Other Graphs for Example 1

] / 2.0
1.5 =
] i = C
] g F1s
1.0 | ~. F
¥ [
; / Lo
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? 7 i Fos
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< » [
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Figure: Q_3/4 is perpendicular
to the line with equation y = x Figure: Bifurcation diagram for
at x = —1/2. Qe, —2<c<1
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Example 2: the Exponential Family E\(x) = ¥ 4+ A

The exponential family has no period doubling bifurcation because
it has no points of prime period 2 at all.

EZ(x)=x = e ™ +A=x
= e =x—-)\
= e+ A=In(x—N)

Observe that E/\_l(x) = In(x — A). Now, the only intersection
points of an increasing function and its inverse function are on the
line with equation y = x. So every point of period 2 for E) is
actually a fixed point for Ey. In general, you can prove that if F is
increasing and F2(x) = x then F(x) = x. Suppose F(x) < x, then
F2(x) < F(x) < x, a contradiction. Similarly if F(x) > x.
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Figure: E_5(x) = ¥ —2 Figure: F(x) = x3 Figure: G(x) = —x3

Neither E_5 nor F have points of prime period 2. G is invertible
and decreasing and does have a 2-cycle: 1 and —1.
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Example 3: the Logistic Family Fy(x) = Ax(1 — x).

There is a period doubling bifurcation at A\g = 3. Check that

pr=1-1/X ;

and u.aE

L_ A1V o3
q)\ — 2)\ 7 0_545 ,-

> A+1-vVA2-2)-3
qA - 2)\ 0:483/"
is the 2-cycle. What should / i I
and € be? Also: see exercises. - - T
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Example 4: Fy(x) = Ax — x3; F'(x) = A — 3x°

FA(X):X<i>x3:x(>\—1)<:>x:00rx:j:\/)\—l.

Since
F/’\(O) = )\ and F/’\(i\/A —1)=3-2),

x = 0 is attracting if —1 < A < 1 and repelling if A > 1 or
A < —1. The two fixed points

Xx=+vA—-1

only exist if A > 1; they are attracting if 1 < A < 2 and repelling if
A > 2.
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Devaney's 2-Cycle for F\(x) = Ax — x°

Period 2 points occur if A > —1:
Fa(x) = —x = F{(x) = Fa(FA(x)) = Fa(—x) = =FA(x) = —(=x) = x;
hence the two non-zero solutions to Fy(x) = —x, namely

X =xVvVA+1,

form a 2-cycle for Fy, which is always repelling. See the exercises.
So the family F) has a period-doubling bifurcation at \g = —1:
the fixed point x = 0 is repelling if A < —1, attracting if A > —1;
and there is no 2-cycle for A < —1, but there is a repelling 2-cycle
it A > —1.
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Correct Version of Figure 6.15, page 65

Here is the bifurcation diagram for Fy(x) = Ax — x3, -2 < A < 1

;

For some reason, in the book
Figure 6.15 has the functions

A Inl.sl H I1|.n X = :|:\/ )\ + 1

opening to the left!

=
in

[TTTT 7T T T T T T T T TT7T
-2.0 -1.5 -1 -0.5 0
lambda

=
n

S
-\'\

e
=]

TTTTA T T T T T T T Bl [T T T T T T
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The Other 2-Cycles for F)

But there are more period 2 points. To find all of them you have
to solve F#(x) = x:
F2(x) = x
S Ax =2 = A3 +30%%° =3+ x7 —x=0
s x(x* XA+ - A-1)(x*=A+1)=0
A+VA2—4
2

Five of these solutions are the previously calculated fixed points
and 2-cycle for F). The other four provide two more 2-cycles:

\/)\:I:\/)\2—4 and \/)\j:\/)\2—4
2 2 '

& x=0orx°=A+lorx>=X—1orx®=
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Bifurcation Diagram for Example 4, —2 < \ < 4.

Check that: .
1. The new 2-cycles only exist g
2. The fixed points £/ — 1 7
are attracting if 1 < \ < 2, 5 '.‘% RV A
and repelling if A > 2. s limbda
3. The new 2-cycles are both .
attracting if 2 < A < /5. =

So F) has two period doubling bifurcations at \g = 2; one in the
interval /; = (0.8,1.2) and one in the interval L = (—1.2,—-0.8).

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla



	Chapter 5: Fixed and Periodic points
	5.1 A Fixed Point Theorem
	5.2 Attraction and Repulsion
	5.3 Calculus of Fixed Points
	5.4 Why Is This True?
	5.5 Periodic Points

	Chapter 6: Bifurcations
	6.1 Dynamics of the Quadratic Map
	6.2 The Saddle-Node Bifurcation
	6.3 The Period-Doubling Bifurcation


