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Calculus Review: The Intermediate Value Theorem

If a function f (x) is continuous on the closed interval [a, b] then it
has no discontinuities; that is, the graph of the function has no
holes, jumps or vertical asymptotes. Putting it another way, the
graph of y = f (x) must be a single curve, with no gaps in it. To
draw it, your pencil would never leave the paper. The Intermediate
Value Theorem is a mathematical restatement of this idea:

If f is a continuous function on the closed interval [a, b]
and K is any value between f (a) and f (b), then there is
a number c in the interval (a, b) such that f (c) = K .

K is called an intermediate value. IVT says that every continuous
function on a closed interval must pass every intermediate value.
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Picture for IVT
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I If f is continuous on the
closed interval [a, b]

I and

f (a) ≤ K ≤ f (b),

or

f (a) ≥ K ≥ f (b),

I then there is a number c in
the interval [a, b] such that

f (c) = K .
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The Fixed Point Theorem

If F : [a, b] −→ [a, b] is a continuous function on the
closed interval [a, b] then F has at least one fixed point
in the interval [a, b].

Proof: Let h(x) = F (x)− x ; then h is a continuous function on
[a, b] and

h(a) = F (a)− a ≥ 0 because F (a) ≥ a;

and
h(b) = F (b)− b ≤ 0 because F (b) ≤ b.

By the Intermediate Value Theorem applied to h on [a, b], there is
a number c ∈ [a, b] such that

h(c) = 0 ⇔ F (c) = c .
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Remarks About the Fixed Point Theorem

1. The theorem states F has at least one fixed point in [a, b];
there could be more than one.

2. The Fixed Point Theorem only applies to a continuous
function which maps the interval [a, b] into itself. One
frequent detail we will have to check in this course is if a
function’s range is contained in its domain.

3. The Fixed Point Theorem assumes F is continuous on a
closed interval; the result may or may not hold true if the
domain of F is not a closed interval.

4. The Fixed Point Theorem is an existence theorem; it doesn’t
indicate what the fixed point is.
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Two Types of Fixed Points

The function F (x) = x2 has two fixed points, x = 0 and x = 1.
Orbits of x0 under F behave markedly differently depending on
which point x0 is close to.

If x0 > 1 then the orbit of x0

under F tends to infinity.
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Attracting and Repelling Fixed Points

On the other hand if |x0| < 1 then orbits of x0 under F tend to 0.

Figure: −1 < x0 < 0 Figure: 0 < x0 < 1

We call 0 an attracting fixed point; we call 1 a repelling fixed point.
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Examples

Let L(x) = mx . The only fixed point of L is x = 0. Whether or not
x = 0 is an attracting fixed point or a repelling fixed point depends
on m, the slope of L. Here are four examples:

Figure: m = 1.4; x0 = 0.1 Figure: m = 0.6; x0 = 0.6
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Figure: m = −1.4; x0 = 0.1 Figure: m = −0.6; x0 = 0.6

If |L′(0)| > 1 then x = 0 is a repelling fixed point; if |L′(0)| < 1
then x = 0 is an attracting fixed point. Consequently, we make the
following definition . . . .
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Definition of Attracting and Repelling Fixed Points

Definition: Suppose p is a fixed point of F . Then

1. p is an attracting fixed point of F if |F ′(p)| < 1;

2. p is a repelling fixed point of F if |F ′(p)| > 1;

3. p is a neutral fixed point of F if |F ′(p)| = 1. A neutral fixed
point is sometimes called an indifferent fixed point.
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Example 1

Let C (x) = cos x . C has a single fixed
point p in the interval [0, π/2]. It is
an attracting fixed point since

|C ′(p)| = | − sin p| < 1.

We already know

p = 0.739085133 . . .

At right is the cobweb representation
of the orbit of x0 = 0.1 under C .
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Example 2

Let F (x) = 2(sin x)2. Its graph is below; there are 3 fixed points.

F ′(x) = 4 sin x cos x = 2 sin 2x .

Then

|F ′(x)| < 1 ⇔ |2 sin 2x | < 1

⇔ | sin 2x | < 1

2

⇔ |x | < π

12
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So the only attracting fixed point of F is x = 0.

Figure: x0 = −0.4 Figure: x0 = 0.4
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The Repelling Fixed Points of Example 2

Figure: x0 = 0.4 Figure: x0 = 0.7
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Figure: x0 = 0.7 Figure: x0 = 2.1

The third fixed point is also repelling, but the orbits do not tend to
infinity. They seem to tend towards a cycle of period 2.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla



Chapter 5: Fixed and Periodic points
Chapter 6: Bifurcations

5.1 A Fixed Point Theorem
5.2 Attraction and Repulsion
5.3 Calculus of Fixed Points
5.4 Why Is This True?
5.5 Periodic Points

Both of the following graphical representations show that the orbit
of x0 = 1.8 under F is not attracted to the fixed point at
approximately p = 1.85, but is repelled from it to an apparent
2-cycle.
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Example 3: F (x) = 2x − 2x2.

F (x) = x ⇔ x = 2x2 ⇔ x = 0 or x = 1/2, and F ′(x) = 2− 4x . So
x = 0 is a repelling fixed point and x = 1/2 is an attracting fixed
point.
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Example 4: F (x) = x − x2.

Then F (x) = x ⇔ x2 = 0 ⇔ x = 0; and F ′(x) = 1− 2x .

Now F ′(0) = 1; so the only
fixed point of F is a neutral
fixed point.
If x0 = .4, the orbit of x0 under
F is attracted to 0.
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But if x0 = −0.1, then the orbit of x0 under F is repelled from 0:

There are many other possibilities for orbits of seeds close to a
neutral fixed point! See the examples in the book, and the
exercises.
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Calculus Review: The Mean Value Theorem

Let f be continuous on [a, b], differentiable on (a, b).

Then there is a number c ∈ (a, b)
such that

f ′(c) =
f (b)− f (a)

b − a
.

r r
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y
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r
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r
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Whether or not a fixed point is attracting or repelling is a
consequence of the Mean Value Theorem.
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Attracting Fixed Point Theorem

Suppose p is an attracting fixed point for F . There is an
interval I that contains p in its interior such that if x0 is
any point in I then

1. xn = F n(x0) is in I ;
2. lim

n→∞
xn = p.

That is, for all x0 sufficiently close to the attracting fixed
point p, every orbit of x0 under F converges to p.
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Proof of the Attracting Fixed Point Theroem

Since |F ′(p)| < 1, there is a number λ such that 0 < λ < 1 and a
number δ > 0 such

x ∈ [p − δ, p + δ] ⇒ |F ′(x)| ≤ λ < 1.

Let I = [p − δ, p + δ], and let x0 ∈ I .

sp − δ sp sp + δrx0 rx1

By MVT there is a number x ∈ I such that

|F (x0)− F (p)| = |F ′(x)||x0 − p| ≤ λ|x0 − p|
⇒ |x1 − p| ≤ λ|x0 − p|

That is, x1 is closer to p than x0 is, since λ < 1.
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Since x1 is also in I , repeat the above argument to conclude that

|x2 − p| ≤ λ|x1 − p| ⇒ |x2 − p| ≤ λ2|x0 − p|.

By repeatedly using the same argument, for any n > 0: xn ∈ I and

|xn − p| ≤ λn|x0 − p|.

This means the orbit of x0 under F is entirely in the interval I and

lim
n→∞

xn = p,

since λ < 1.
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Repelling Fixed Point Theorem

Suppose p is a repelling fixed point for F . There is an
interval I that contains p in its interior such that if
x ∈ I , x 6= p, then |F (x)− p| > |x − p|.

Proof: |F ′(p)| > 1, so there are numbers λ and δ such that

|F ′(p)| > λ > 1,

and x ∈ [p − δ, p + δ] ⇒ |F ′(x)| ≥ λ > 1. Let I = [p − δ, p + δ],
and let x ∈ I . By MVT there is a number c ∈ I such that

|F (x)−F (p)| = |F ′(c)||x−p| ≥ λ|x−p| ⇒ |F (x)−p| ≥ λ|x−p|.

Since λ > 1 it follows that |F (x)− p| > |x − p|.
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Consequences of the Repelling Fixed Point Theorem

1. That is, F (x) is farther from p then x is. So no matter how
close xn 6= p is to p, xn+1 = F (xn) is farther from p.

2. Indeed, as Devaney points out: if x0 is any point in I , x0 6= p,
then there is an integer n > 0 such that

xn = F n(x0) /∈ I .

That is, for all x0 sufficiently close to but not equal to the
repelling fixed point p, the orbit of x0 under F cannot remain
in the interval I . Why? If x0, x1, . . . , xn are all in I then, by
repeating the argument in the proof above n times,
|xn − p| ≥ λn|x0 − p|. For n big enough λn|x0 − p| will be
greater than the length of the interval I ; since λ > 1. Thus
not every point in the orbit of x0 under F can be in I .
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Example 1: An Attracting 2-Cycle

Let F (x) = x2 − 1. It has two fixed points, x =
1±

√
5

2
.

But both fixed points are re-
pelling, since F ′(x) = 2x and∣∣∣∣∣F ′

(
1±

√
5

2

)∣∣∣∣∣ > 1.

What happens to the orbit of
x0 = 0.75 under F?

It seems to be attracted to the 2-cylce 0,−1. Why?
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Example 1, Continued

F 2(x) = (x2 − 1)2 − 1 = x4 − 2x2;

F 2(x) = x

⇔ x4 − 2x2 − x = 0

⇔ x(x + 1)(x2 − x − 1) = 0

⇔ x = 0, x = −1, x =
1±

√
5

2

(F 2)′(x) = 4x3 − 4x ⇒ (F 2)′(0) = 0, (F 2)′(−1) = 0, and

(F 2)′

(
1±

√
5

2

)
= 6± 2

√
5. So the only attracting fixed points of

F 2 are x = 0 and x = −1.
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Example 1, Continued

Figure: Orbit of x0 = 0.75 under
F 2 converges to −1.

Figure: Orbit of x0 = −0.4375
under F 2 converges to 0.
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Example 1, Concluded

The orbit of x0 = .75 under F 2 converges to −1; but the orbit of
x1 = F (0.75) = −0.4375 under F 2 converges to 0. That is, orbits
under F 2 are attracted to the fixed points of F 2. However, orbits
under F will cycle back and forth as they converge to the 2-cycle
consisting of the attracting fixed points of F 2.
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Chain Rule Along a Cycle

A simple chain rule calculation gives the key to determining if an
n-cycle of F is attracting or repelling. Suppose x0, x1, . . . , xn−1,
with xi = F i (x0), lie on a cycle of period n for F . Then

(F n)′(x0) = (F ◦ F n−1)′(x0)

= F ′(F n−1(x0))(F
n−1)′(x0)

= F ′(xn−1)(F ◦ F n−2)′(x0)

= F ′(xn−1)F
′(F n−2(x0))(F

n−2)′(x0)

= F ′(xn−1)F
′(xn−2)(F ◦ F n−3)′(x0)

. . . . . .

= F ′(xn−1)F
′(xn−2) . . .F ′(x2)F

′(x1)F
′(x0)

Note: (F n)′(xi ) is the same for any point on the n-cycle.
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Types of Cycles

Suppose x0, x1, . . . , xn−1, with xi = F i (x0), lie on a cycle of period
n for F . Let xi be any point in the n-cycle, 0 ≤ i ≤ n − 1.

1. The cycle is attracting if |(F n)′(xi )| < 1. That is∣∣F ′(xn−1)F
′(xn−2) . . .F ′(x2)F

′(x1)F
′(x0)

∣∣ < 1.

2. The cycle is repelling if |(F n)′(xi )| > 1. That is∣∣F ′(xn−1)F
′(xn−2) . . .F ′(x2)F

′(x1)F
′(x0)

∣∣ > 1.

3. The cycle is neutral if |(F n)′(xi )| = 1. That is∣∣F ′(xn−1)F
′(xn−2) . . .F ′(x2)F

′(x1)F
′(x0)

∣∣ = 1.
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Example 2

Let F (x) = x2 − 1, as in Example 1. F has a 2-cycle 0 and −1
since

F (0) = −1 and F (−1) = 0.

F ′(x) = 2x , so

F ′(0)F ′(−1) = (0)(−2) = 0 < 1,

and the 2-cycle is attracting.
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Example 3

Let F (x) = −3

2
x2 +

5

2
x + 1. F has a 3-cycle 0, 1 and 2 since

F (0) = 1,F (1) = 2, and F (2) = 0.

F ′(x) = −3x +
5

2
, so

F ′(0)F ′(1)F ′(2) =

(
5

2

)(
−1

2

)(
−7

2

)
=

35

8
> 1,

and the 3-cycle is repelling.
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An Orbit For Example 3

Here is the orbit of x0 = 0.1 under F . Even though the seed is
close to the periodic point 0, the orbit does not tend toward the
3-cycle, even after 200 iterations:
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Example 4

Even though the doubling function D has many cycles every one of
them must be repelling. Why? Recall

D : [0, 1) −→ [0, 1)

by

D(x) =

{
2x if 0 ≤ x < 1

2
2x − 1 if 1

2 ≤ x < 1
.

So

D ′(x) = 2, if x 6= 1

2
.

If x0 is any periodic point with prime period n, then

(Dn)′(x0) = 2n > 1.
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The Quadratic Map Qc

Let
Qc(x) = x2 + c ,

where c is a constant. For each different value of c we get a
different dynamical system Qc . In Chapters 6 to 10 we shall do a
thorough analysis of the different dynamical systems Qc as the
parameter c varies. And to end the course, in Chapters 16 and 17,
we will look at the quadratic map again, but as a function of a
complex variable z :

Qc(z) = z2 + c ,

where c will be a complex number. But for the moment we limit
ourselves to real variables x and real numbers c .
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The Fixed Points of Qc .

Qc(x) = x ⇔ x2 + c = x

⇔ x2 − x + c = 0

⇔ x =
1±

√
1− 4c

2

Let

p+ =
1 +

√
1− 4c

2
and p− =

1−
√

1− 4c

2
.

There are three cases:

1. Qc has no (real) fixed points if c > 1/4

2. p+ = p− = 1/2 if c = 1/4

3. p+ and p− are real and distinct if c < 1/4
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The Case c > 1/4

In this case the graph of Qc never in-
tersects the line y = x . For any choice
of x0 the orbit of x0 under Qc will tend
to infinity. The graphical analysis to
the right exhibits the case for c = .5
and x0 = 0.
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6.1 Dynamics of the Quadratic Map
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6.3 The Period-Doubling Bifurcation

The case c = 1/4

In this case there is only one fixed point, p = 1/2, and it is a
neutral fixed point since Q ′c(x) = 2x ⇒ Q ′c(1/2) = 1.

Figure: x0 = 0 Figure: x0 = 0.6
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The Case c < 1/4

Since Q ′c(x) = 2x we have

Q ′c(p+) = 2p+ = 1 +
√

1− 4c > 1.

So p+ is always a repelling fixed point for Qc . On the other hand,

Q ′c(p−) = 2p− = 1−
√

1− 4c .

Thus p− will be attracting for some values of c and repelling for
others. Some terminology: the quadratic family Qc has a tangent,
or saddle-node, bifurcation at c = 1/4. That is, for c > 1/4 there
are no fixed points for Qc ; at c = 1/4 there is a neutral fixed point
for Qc ; and if c < 1/4 there are two fixed points for Qc , one
attracting and one repelling.
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The Fixed Point p− with c < 1/4

1. p− is an attracting fixed point for Qc if

|Q ′c(p−)| < 1 ⇔ −1 < 1−
√

1− 4c < 1

⇔ −2 < −
√

1− 4c < 0

⇔ 2 >
√

1− 4c > 0

⇒ 4 > 1− 4c > 0

⇔ 3 > −4c > −1

⇔ −3/4 < c < 1/4

2. p− is a neutral fixed point for Qc if c = −3/4

3. p− is a repelling fixed point for Cc if c < −3/4.
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The Interval [−p+, p+], for c ≤ 1/4

Since Qc(−x) = Qc(x), the fate of any orbit of −x0 under Qc is
always the same as the fate of the orbit of x0 under Qc . In
particular,

Qc(−p+) = Qc(p+) = p+,

so −p+ is an eventual fixed point for Qc . We have seen that for
x0 > p+ the orbit of x0 under Qc tends to infinity. Likewise, if
x0 < −p+ the orbit of x0 under Qc will also tend to infinity. Thus
for any seed

x0 /∈ [−p+, p+]

the orbit under Qc tends to infinity. The next slide illustrates this
result for the case c = −1/4 and |x0| = 1.25. Aside: if c = −1/4,

p+ =
1 +

√
2

2
' 1.21.
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Figure: c = −1/4; x0 = −1.25 Figure: c = −1/4; x0 = 1.25
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If x0 ∈ [−p+, p+], for c ≤ 1/4.

All of the interesting dynamics occurs if x0 ∈ [−p+, p+], for
c ≤ 1/4. Note that

p− =
1−

√
1− 4c

2
∈ [−p+, p+],

for c ≤ 1/4. But, as we have seen above, p− is only an attracting
fixed point if

−3

4
< c <

1

4
.

It can be proved that if −3/4 ≤ c < 1/4 and x0 ∈ [−p+, p+], then
the orbit of x0 under Qc converges to the fixed point p−. Two
examples are illustrated in the next slide.
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Figure: c = −1/4; x0 = 0.9 Figure: c = 1/8; x0 = 0.8
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An Attracting 2-Cycle

What happens if c ≤ −3/4? Here are two graphical representations
of the orbit of x0 = 0 under Q−4/5:
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Here are two more graphical representations, of the orbit of x0 = 0
under Q−6/5:

For both values, c = −4/5 or c = −6/5, the orbit appears to
converge to an attracting 2-cycle. Why should this be?
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Points of Prime Period 2, c ≤ −3/4

Q2
c (x) = x ⇔ (x2 + c)2 + c = x

⇔ x4 + 2cx2 − x + c2 + c = 0

⇔ (x2 − x + c)(x2 + x + c + 1) = 0 (Why?)

⇔ x = p−, x = p+ or x =
−1±

√
−3− 4c

2
Let

q− =
−1−

√
−3− 4c

2
, q+ =

−1 +
√
−3− 4c

2
.

Check that Q ′c(q−)Q ′c(q+) = 4 + 4c . Hence q−, q+ is an
attracting two cycle if

|4 + 4c | < 1 ⇔ −5

4
< c < −3

4
.
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The quadratic family Qc is said to have a period-doubling
bifurcation at c = −3/4. If c < −5/4, then the 2-cycle q−, q+

becomes a repelling 2-cycle. The dynamics then change again:
there is another period-doubling bifurcation at c = −5/4. Here is
an example, with x0 = 0 and c = −1.35:
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Definition of a Saddle-Node Bifurcation

A one-parameter family of functions Fλ has a tangent, or
saddle-node, bifurcation in the open interval I ⊂ R at the
parameter value λ0 if there is an ε > 0 such that

1. Fλ0 has one fixed point in I and this fixed point is neutral;

2. for all λ in one half of the interval (λ0 − ε, λ0 + ε), Fλ has no
fixed points in I ;

3. for all λ in the other half of the interval (λ0 − ε, λ0 + ε), Fλ

has two fixed points in I , one attracting and one repelling.

Note: this definition describes a change in the fixed point structure
of Fλ. Periodic points of Fλ can also have a tangent bifurcation:
replace Fλ with F n

λ for a cycle of period n in the above definition.
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Example 1

The quadratic family Qc has a tangent bifurcation at c0 = 1/4,
since

1. Q1/4(x) = x2 + 1/4 has a fixed point, p = 1/2, which is a
neutral fixed point;

2. Qc has no fixed points for 1/4 < c < ∞;

3. Qc has two fixed points p− and p+ if −3/4 < c < 1/4, of
which p− is attracting and p+ is repelling.

In terms of the definition, you can take I = R and ε = 1.
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Graphs for Example 1

Figure: c = 1/2 Figure: c = 1/4 Figure: c = −1/2

From this sequence of graphs you can see why its called a tangent
bifurcation.
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Bifurcation Diagram for Example 1

For c ≤ 1/4 we had

p+ =
1 +

√
1− 4c

2

and

p− =
1−

√
1− 4c

2
.

The diagram to the right plots
p+, p− as functions of c . Figure: Bifurcation at c0 = 1/4

This is called a bifurcation diagram.
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Example 2

Let Eλ(x) = ex + λ; this is called the exponential family. It has a
tangent bifurcation in the interval R at λ = −1:

1. If λ > −1 then Eλ(x) > x for all x , so Eλ has no fixed points.

2. If λ = −1 then the equation of the tangent line to E−1 at
x = 0 is y = x . Since E ′−1(0) = e0 = 1, the fixed point x = 0
is a neutral fixed point.

3. If λ < −1 then the graph of Eλ intersects the line with
equation y = x in two points, say p1 and p2, with p1 < p2.
Check that: p1 < 0 and p2 > 1;

0 < E ′λ(p1) = ep1 < 1;E ′λ(p2) = ep2 > 1;

so p1 is always an attracting fixed point, and p2 is always a
repelling fixed point. In this example, any ε > 0 is OK.
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Graphs for Example 2

Figure: λ = 0 Figure: λ = −1 Figure: λ = −2

It is not easy to draw the bifurcation diagram for the exponential
family, because you can’t solve for x if ex + λ = x and λ < −1.
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Example 3

Fλ(x) = λx(1− x), λ 6= 0 is called the logistic family. Its fixed
points are easy to determine:

Fλ(x) = x ⇔ λx(1− x) = x

⇔ x = 0 or λ− λx = 1

⇔ x = 0 or x =
λ− 1

λ
= 1− 1

λ

Now

F ′λ(0) = λ and F ′λ

(
1− 1

λ

)
= 2− λ,

as you may check. It can also be shown that for 0 < λ ≤ 4,

Fλ : [0, 1] −→ [0, 1].
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If λ = 1 then the only fixed point of
Fλ(x) is x = 0 and it is neutral. If
0 < λ < 1 then x = 0 is an attracting

fixed point and x = 1− 1

λ
is repelling.

But if 1 < λ < 3, then x = 0 is the re-

pelling fixed point and x = 1− 1

λ
is the

attracting fixed point.

According to our definition, there is no tangent bifurcation point
for the logistic family at λ = 1: there are two fixed points on each
side of λ = 1. It makes no difference what you choose for the open
interval I or for ε > 0; you can’t arrange Fλ for λ in one side of
(1− ε, 1 + ε) to have no fixed points. However it is true that F1(x)
is tangent to the line y = x at x = 0.
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Definition of a Period Doubling Bifurcation

A one-parameter family of functions Fλ has a period-doubling
bifurcation in the open interval I ⊂ R at the parameter value λ0 if
there is an ε > 0 such that

1. for each λ ∈ [λ0 − ε, λ0 + ε], Fλ has a unique fixed point
pλ ∈ I ;

2. for all λ in one half of the interval (λ0 − ε, λ0 + ε), including
λ = λ0, Fλ has no cycles of period 2 in I and pλ is attracting
(resp. repelling);

3. for all λ in the other half of the interval (λ0 − ε, λ0 + ε),
excluding λ = λ0, there is a unique 2-cycle q1

λ, q2
λ ∈ I with

F (q1
λ) = q2

λ. This 2-cycle is attracting (resp. repelling).
Meanwhile, the fixed point pλ is repelling (resp. attracting).

4. As λ → λ0 both qi
λ → pλ.
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Remarks About the Definition

1. At a period doubling bifurcation one of two things happens:
an attracting fixed point changes to a repelling fixed point
while at the same time giving rise to an attracting 2-cycle; or
a repelling fixed point changes to an attracting fixed point
while at the same time giving rise to a repelling 2-cycle.

2. Whereas a tangent bifurcation occurs when the graph of Fλ is
tangent to the line with equation y = x , a period-doubling
bifurcation occurs when the graph of Fλ is perpendicular to
the line with equation y = x , as will be illustrated by some
examples. This implies that the graph of F 2

λ is tangent to the
line y = x when the bifurcation occurs:

(F 2
λ0

)′(pλ0) = F ′λ0
(Fλ0(pλ0))F

′
λ0

(pλ0) =
(
F ′λ0

(pλ0)
)2

= (−1)2 = 1.
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Example 1

The quadratic family Qc has a period doubling bifurcation at
c0 = −3/4. Why? Recall that

1.

p− =
1−

√
1− 4c

2

is an attracting fixed point for −3/4 ≤ c < 1/4; and that

2.

q− =
−1−

√
−3− 4c

2
, q+ =

−1 +
√
−3− 4c

2

is an attracting 2-cylce if −5/4 < c < −3/4, for which p− is
now repelling.
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The following graphical analyses illustrate how the orbit of
x0 = 0.8 converges to a fixed point for Q−0.6 but is attracted to a
2-cyle for Q−0.8:

Figure: c = −0.6; x0 = 0.8 Figure: c = −0.8; x0 = 0.8
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The Graphs of Q2
c for Example 1

Figure: c = −3/5 Figure: c = −3/4 Figure: c = −1

Q2
−3/4(x) is tangent to the line y = x at p− = −1/2.
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Other Graphs for Example 1

Figure: Q−3/4 is perpendicular
to the line with equation y = x
at x = −1/2.

Figure: Bifurcation diagram for
Qc , −2 < c < 1
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Example 2: the Exponential Family Eλ(x) = ex + λ

The exponential family has no period doubling bifurcation because
it has no points of prime period 2 at all.

E 2
λ(x) = x ⇒ eex+λ + λ = x

⇒ eex+λ = x − λ

⇒ ex + λ = ln(x − λ)

Observe that E−1
λ (x) = ln(x − λ). Now, the only intersection

points of an increasing function and its inverse function are on the
line with equation y = x . So every point of period 2 for Eλ is
actually a fixed point for Eλ. In general, you can prove that if F is
increasing and F 2(x) = x then F (x) = x . Suppose F (x) < x , then
F 2(x) < F (x) < x , a contradiction. Similarly if F (x) > x .
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Figure: E−2(x) = ex − 2 Figure: F (x) = x3 Figure: G (x) = −x3

Neither E−2 nor F have points of prime period 2. G is invertible
and decreasing and does have a 2-cycle: 1 and −1.
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Example 3: the Logistic Family Fλ(x) = λx(1− x).

There is a period doubling bifurcation at λ0 = 3. Check that

pλ = 1− 1/λ;

and

q1
λ =

λ + 1 +
√

λ2 − 2λ− 3

2λ
,

q2
λ =

λ + 1−
√

λ2 − 2λ− 3

2λ

is the 2-cycle. What should I
and ε be? Also: see exercises.
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Example 4: Fλ(x) = λx − x3; F ′(x) = λ− 3x2

Fλ(x) = x ⇔ x3 = x(λ− 1) ⇔ x = 0 or x = ±
√

λ− 1.

Since
F ′λ(0) = λ and F ′λ(±

√
λ− 1) = 3− 2λ,

x = 0 is attracting if −1 < λ < 1 and repelling if λ > 1 or
λ < −1. The two fixed points

x = ±
√

λ− 1

only exist if λ > 1; they are attracting if 1 < λ < 2 and repelling if
λ > 2.
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Devaney’s 2-Cycle for Fλ(x) = λx − x3

Period 2 points occur if λ > −1 :

Fλ(x) = −x ⇒ F 2
λ(x) = Fλ(Fλ(x)) = Fλ(−x) = −Fλ(x) = −(−x) = x ;

hence the two non-zero solutions to Fλ(x) = −x , namely

x = ±
√

λ + 1,

form a 2-cycle for Fλ, which is always repelling. See the exercises.
So the family Fλ has a period-doubling bifurcation at λ0 = −1:
the fixed point x = 0 is repelling if λ < −1, attracting if λ > −1;
and there is no 2-cycle for λ < −1, but there is a repelling 2-cycle
if λ > −1.
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Correct Version of Figure 6.15, page 65

Here is the bifurcation diagram for Fλ(x) = λx − x3, −2 ≤ λ ≤ 1:

For some reason, in the book
Figure 6.15 has the functions

x = ±
√

λ + 1

opening to the left!
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The Other 2-Cycles for Fλ

But there are more period 2 points. To find all of them you have
to solve F 2

λ(x) = x :

F 2
λ(x) = x

⇔ λ2x − λx3 − λ3x3 + 3λ2x5 − 3λx7 + x9 − x = 0

⇔ x(x4 − x2λ + 1)(x2 − λ− 1)(x2 − λ + 1) = 0

⇔ x = 0 or x2 = λ + 1 or x2 = λ− 1 or x2 =
λ±

√
λ2 − 4

2

Five of these solutions are the previously calculated fixed points
and 2-cycle for Fλ. The other four provide two more 2-cycles:√

λ±
√

λ2 − 4

2
and −

√
λ±

√
λ2 − 4

2
.
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Bifurcation Diagram for Example 4, −2 ≤ λ ≤ 4.

Check that:

1. The new 2-cycles only exist
if λ ≥ 2.

2. The fixed points ±
√

λ− 1
are attracting if 1 < λ < 2,
and repelling if λ > 2.

3. The new 2-cycles are both
attracting if 2 < λ <

√
5.

So Fλ has two period doubling bifurcations at λ0 = 2; one in the
interval I1 = (0.8, 1.2) and one in the interval I2 = (−1.2,−0.8).
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