MAT335H1F Lec0101 Burbulla

Chapter 5 and 6 Lecture Notes

Fall 2012

Chapter 5 and 6 Lecture Notes MA

MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

Chapter 5: Fixed and Periodic points

- 5.1 A Fixed Point Theorem
- 5.2 Attraction and Repulsion
- 5.3 Calculus of Fixed Points
- 5.4 Why Is This True?
- 5.5 Periodic Points

Chapter 6: Bifurcations

- 6.1 Dynamics of the Quadratic Map
- 6.2 The Saddle-Node Bifurcation
- 6.3 The Period-Doubling Bifurcation

Calculus Review: The Intermediate Value Theorem

If a function f(x) is continuous on the closed interval [a, b] then it has no discontinuities; that is, the graph of the function has no holes, jumps or vertical asymptotes. Putting it another way, the graph of y = f(x) must be a single curve, with no gaps in it. To draw it, your pencil would never leave the paper. The Intermediate Value Theorem is a mathematical restatement of this idea:

If f is a continuous function on the closed interval [a, b]and K is any value between f(a) and f(b), then there is a number c in the interval (a, b) such that f(c) = K.

K is called an intermediate value. IVT says that every continuous function on a closed interval must pass every intermediate value.

The Fixed Point Theorem

If $F : [a, b] \longrightarrow [a, b]$ is a continuous function on the closed interval [a, b] then F has at least one fixed point in the interval [a, b].

Proof: Let h(x) = F(x) - x; then h is a continuous function on [a, b] and

$$h(a) = F(a) - a \ge 0$$
 because $F(a) \ge a$;

and

$$h(b) = F(b) - b \le 0$$
 because $F(b) \le b$.

By the Intermediate Value Theorem applied to h on [a, b], there is a number $c \in [a, b]$ such that

$$h(c) = 0 \Leftrightarrow F(c) = c.$$

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

5.1	A Fixed Point Theorem
5.2	Attraction and Repulsion
5.3	Calculus of Fixed Points
5.4	Why Is This True?
5.5	Periodic Points

Remarks About the Fixed Point Theorem

- 1. The theorem states F has at least one fixed point in [a, b]; there could be more than one.
- The Fixed Point Theorem only applies to a continuous function which maps the interval [a, b] into itself. One frequent detail we will have to check in this course is if a function's range is contained in its domain.
- 3. The Fixed Point Theorem assumes F is continuous on a closed interval; the result may or may not hold true if the domain of F is not a closed interval.
- 4. The Fixed Point Theorem is an existence theorem; it doesn't indicate what the fixed point is.

Two Types of Fixed Points

The function $F(x) = x^2$ has two fixed points, x = 0 and x = 1. Orbits of x_0 under F behave markedly differently depending on which point x_0 is close to.

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations 5.1 A Fixed Point Theorem5.2 Attraction and Repulsion5.3 Calculus of Fixed Points5.4 Why Is This True?5.5 Periodic Points

Attracting and Repelling Fixed Points

On the other hand if $|x_0| < 1$ then orbits of x_0 under F tend to 0.

Figure: $-1 < x_0 < 0$

Figure: $0 < x_0 < 1$

We call 0 an attracting fixed point; we call 1 a repelling fixed point.

Examples

Let L(x) = mx. The only fixed point of L is x = 0. Whether or not x = 0 is an attracting fixed point or a repelling fixed point depends on m, the slope of L. Here are four examples:

Figure: m = -0.6; $x_0 = 0.6$

If |L'(0)| > 1 then x = 0 is a repelling fixed point; if |L'(0)| < 1 then x = 0 is an attracting fixed point. Consequently, we make the following definition

Definition of Attracting and Repelling Fixed Points

Definition: Suppose p is a fixed point of F. Then

- 1. *p* is an attracting fixed point of *F* if |F'(p)| < 1;
- 2. p is a repelling fixed point of F if |F'(p)| > 1;
- 3. *p* is a neutral fixed point of *F* if |F'(p)| = 1. A neutral fixed point is sometimes called an indifferent fixed point.

Chapter 5 and 6 Lecture Notes

MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

```
5.1 A Fixed Point Theorem
5.2 Attraction and Repulsion
5.3 Calculus of Fixed Points
5.4 Why Is This True?
5.5 Periodic Points
```

Example 1

Let $C(x) = \cos x$. C has a single fixed point p in the interval $[0, \pi/2]$. It is an attracting fixed point since

$$C'(p)|=|-\sin p|<1.$$

We already know

$$p = 0.739085133..$$

At right is the cobweb representation of the orbit of $x_0 = 0.1$ under *C*.

Example 2

Let $F(x) = 2(\sin x)^2$. Its graph is below; there are 3 fixed points.

Chapter 5 and 6 Lecture Notes	MAI 335H1F Lec0101 Burbulla
Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations	5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Physically Desired

So the only attracting fixed point of F is x = 0.

Figure: $x_0 = -0.4$

Figure: $x_0 = 0.4$

The Repelling Fixed Points of Example 2

Figure: $x_0 = 0.4$

Chapter 5 and 6 Lecture Notes

MAT335H1F Lec0101 Burbulla

Figure: $x_0 = 2.1$

The third fixed point is also repelling, but the orbits do not tend to infinity. They seem to tend towards a cycle of period 2.

Both of the following graphical representations show that the orbit of $x_0 = 1.8$ under *F* is not attracted to the fixed point at approximately p = 1.85, but is repelled from it to an apparent 2-cycle.

Chapter 5 and 6 Lecture Notes MAT33

MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations 5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points

Example 3: $F(x) = 2x - 2x^2$.

 $F(x) = x \Leftrightarrow x = 2x^2 \Leftrightarrow x = 0$ or x = 1/2, and F'(x) = 2 - 4x. So x = 0 is a repelling fixed point and x = 1/2 is an attracting fixed point.

Example 4: $F(x) = x - x^2$.

Then
$$F(x) = x \Leftrightarrow x^2 = 0 \Leftrightarrow x = 0$$
; and $F'(x) = 1 - 2x$.

Now F'(0) = 1; so the only fixed point of F is a neutral fixed point.

If $x_0 = .4$, the orbit of x_0 under F is attracted to 0.

But if $x_0 = -0.1$, then the orbit of x_0 under F is repelled from 0:

There are many other possibilities for orbits of seeds close to a neutral fixed point! See the examples in the book, and the exercises.

Calculus Review: The Mean Value Theorem

Let f be continuous on [a, b], differentiable on (a, b).

Then there is a number $c \in (a, b)$ such that

$$f'(c)=\frac{f(b)-f(a)}{b-a}.$$

Whether or not a fixed point is attracting or repelling is a consequence of the Mean Value Theorem.

Suppose p is an attracting fixed point for F. There is an interval I that contains p in its interior such that if x_0 is any point in I then

- 1. $x_n = F^n(x_0)$ is in I;
- 2. $\lim_{n\to\infty} x_n = p$.

That is, for all x_0 sufficiently close to the attracting fixed point p, every orbit of x_0 under F converges to p.

Proof of the Attracting Fixed Point Theroem

Since |F'(p)| < 1, there is a number λ such that $0 < \lambda < 1$ and a number $\delta > 0$ such

$$x \in [p - \delta, p + \delta] \Rightarrow |F'(x)| \le \lambda < 1.$$

Let $I = [p - \delta, p + \delta]$, and let $x_0 \in I$.

$$p-\delta$$
 x_0 p x_1 $p+\delta$

By MVT there is a number $x \in I$ such that

$$ert F(x_0) - F(p) ert = ert F'(x) ert ert ert x_0 - p ert \le \lambda ert x_0 - p ert$$

 $\Rightarrow ert x_1 - p ert \le \lambda ert x_0 - p ert$

That is, x_1 is closer to p than x_0 is, since $\lambda < 1$.

Chapter 5 and 6 Lecture Notes	MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations	5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points
---	---

Since x_1 is also in I, repeat the above argument to conclude that

$$|x_2 - p| \leq \lambda |x_1 - p| \Rightarrow |x_2 - p| \leq \lambda^2 |x_0 - p|.$$

By repeatedly using the same argument, for any n > 0: $x_n \in I$ and

$$|x_n-p|\leq \lambda^n|x_0-p|.$$

This means the orbit of x_0 under F is entirely in the interval I and

$$\lim_{n\to\infty}x_n=p,$$

since $\lambda < 1$.

Repelling Fixed Point Theorem

Suppose p is a repelling fixed point for F. There is an interval I that contains p in its interior such that if $x \in I, x \neq p$, then |F(x) - p| > |x - p|.

Proof: |F'(p)| > 1, so there are numbers λ and δ such that

 $|F'(p)| > \lambda > 1,$

and $x \in [p - \delta, p + \delta] \Rightarrow |F'(x)| \ge \lambda > 1$. Let $I = [p - \delta, p + \delta]$, and let $x \in I$. By MVT there is a number $c \in I$ such that

$$|F(x)-F(p)|=|F'(c)||x-p|\geq \lambda|x-p| \Rightarrow |F(x)-p|\geq \lambda|x-p|.$$

Since $\lambda > 1$ it follows that |F(x) - p| > |x - p|.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

5.1	A Fixed Point Theorem
5.2	Attraction and Repulsion
5.3	Calculus of Fixed Points
5.4	Why Is This True?
5.5	Periodic Points

Consequences of the Repelling Fixed Point Theorem

- 1. That is, F(x) is farther from p then x is. So no matter how close $x_n \neq p$ is to $p, x_{n+1} = F(x_n)$ is farther from p.
- 2. Indeed, as Devaney points out: if x_0 is any point in I, $x_0 \neq p$, then there is an integer n > 0 such that

$$x_n = F^n(x_0) \notin I.$$

That is, for all x_0 sufficiently close to but not equal to the repelling fixed point p, the orbit of x_0 under F cannot remain in the interval I. Why? If x_0, x_1, \ldots, x_n are all in I then, by repeating the argument in the proof above n times, $|x_n - p| \ge \lambda^n |x_0 - p|$. For n big enough $\lambda^n |x_0 - p|$ will be greater than the length of the interval I; since $\lambda > 1$. Thus not every point in the orbit of x_0 under F can be in I.

Example 1: An Attracting 2-Cycle

Let
$$F(x) = x^2 - 1$$
. It has two fixed points, $x = \frac{1 \pm \sqrt{5}}{2}$.

But both fixed points are repelling, since F'(x) = 2x and

$$\left| F'\left(\frac{1\pm\sqrt{5}}{2}\right) \right| > 1.$$

What happens to the orbit of $x_0 = 0.75$ under *F*?

It seems to be attracted to the 2-cylce 0, -1. Why?

5.5 Periodic Points

Example 1, Continued

Figure: Orbit of $x_0 = 0.75$ under F^2 converges to -1.

Figure: Orbit of $x_0 = -0.4375$ under F^2 converges to 0.

Chapter 5 and 6 Lecture Notes

MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations 5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points

Example 1, Concluded

The orbit of $x_0 = .75$ under F^2 converges to -1; but the orbit of $x_1 = F(0.75) = -0.4375$ under F^2 converges to 0. That is, orbits under F^2 are attracted to the fixed points of F^2 . However, orbits under F will cycle back and forth as they converge to the 2-cycle consisting of the attracting fixed points of F^2 .

Chain Rule Along a Cycle

A simple chain rule calculation gives the key to determining if an *n*-cycle of *F* is attracting or repelling. Suppose $x_0, x_1, \ldots, x_{n-1}$, with $x_i = F^i(x_0)$, lie on a cycle of period *n* for *F*. Then

$$(F^{n})'(x_{0}) = (F \circ F^{n-1})'(x_{0})$$

$$= F'(F^{n-1}(x_{0}))(F^{n-1})'(x_{0})$$

$$= F'(x_{n-1})(F \circ F^{n-2})'(x_{0})$$

$$= F'(x_{n-1})F'(F^{n-2}(x_{0}))(F^{n-2})'(x_{0})$$

$$= F'(x_{n-1})F'(x_{n-2})(F \circ F^{n-3})'(x_{0})$$

$$\dots$$

$$= F'(x_{n-1})F'(x_{n-2})\dots F'(x_{2})F'(x_{1})F'(x_{0})$$

Note: $(F^n)'(x_i)$ is the same for any point on the *n*-cycle.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations	5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points
Types of Cycles	

Suppose $x_0, x_1, \ldots, x_{n-1}$, with $x_i = F^i(x_0)$, lie on a cycle of period n for F. Let x_i be any point in the n-cycle, $0 \le i \le n-1$.

1. The cycle is attracting if $|(F^n)'(x_i)| < 1$. That is

$$|F'(x_{n-1})F'(x_{n-2})\ldots F'(x_2)F'(x_1)F'(x_0)| < 1.$$

2. The cycle is repelling if $|(F^n)'(x_i)| > 1$. That is

$$|F'(x_{n-1})F'(x_{n-2})\ldots F'(x_2)F'(x_1)F'(x_0)| > 1.$$

3. The cycle is neutral if $|(F^n)'(x_i)| = 1$. That is

$$|F'(x_{n-1})F'(x_{n-2})\dots F'(x_2)F'(x_1)F'(x_0)| = 1.$$

Example 2

Let $F(x) = x^2 - 1$, as in Example 1. F has a 2-cycle 0 and -1 since

$$F(0) = -1$$
 and $F(-1) = 0$.

F'(x) = 2x, so

F'(0)F'(-1) = (0)(-2) = 0 < 1,

and the 2-cycle is attracting.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations	5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points
Example 3	

Let $F(x) = -\frac{3}{2}x^2 + \frac{5}{2}x + 1$. *F* has a 3-cycle 0, 1 and 2 since F(0) = 1, F(1) = 2, and F(2) = 0. $F'(x) = -3x + \frac{5}{2}, \text{ so}$ $F'(0)F'(1)F'(2) = \left(\frac{5}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{7}{2}\right) = \frac{35}{8} > 1,$

and the 3-cycle is repelling.

An Orbit For Example 3

Here is the orbit of $x_0 = 0.1$ under *F*. Even though the seed is close to the periodic point 0, the orbit does not tend toward the 3-cycle, even after 200 iterations:

Chapter 5 and 6 Lecture Notes

MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points	
Chapter 6: Bifurcations	

5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points

Example 4

Even though the doubling function D has many cycles every one of them must be repelling. Why? Recall

$$D: [0,1) \longrightarrow [0,1)$$

by

$$D(x) = \left\{egin{array}{ccc} 2x & ext{if} & 0 \leq x < rac{1}{2} \ 2x - 1 & ext{if} & rac{1}{2} \leq x < 1 \end{array}
ight.$$

So

$$D'(x)=2, ext{ if } x
eq rac{1}{2}$$

If x_0 is any periodic point with prime period n, then

$$(D^n)'(x_0) = 2^n > 1.$$

The Quadratic Map Q_c

Let

$$Q_c(x)=x^2+c,$$

where c is a constant. For each different value of c we get a different dynamical system Q_c . In Chapters 6 to 10 we shall do a thorough analysis of the different dynamical systems Q_c as the parameter c varies. And to end the course, in Chapters 16 and 17, we will look at the quadratic map again, but as a function of a complex variable z:

$$Q_c(z)=z^2+c,$$

where c will be a complex number. But for the moment we limit ourselves to real variables x and real numbers c.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

- 6.1 Dynamics of the Quadratic Map
- 6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation

The Fixed Points of Q_c .

$$Q_{c}(x) = x \quad \Leftrightarrow \quad x^{2} + c = x$$
$$\Leftrightarrow \quad x^{2} - x + c = 0$$
$$\Leftrightarrow \quad x = \frac{1 \pm \sqrt{1 - 4c}}{2}$$

Let

$$p_+ = rac{1+\sqrt{1-4c}}{2} ext{ and } p_- = rac{1-\sqrt{1-4c}}{2}.$$

There are three cases:

- 1. Q_c has no (real) fixed points if c > 1/4
- 2. $p_+ = p_- = 1/2$ if c = 1/4
- 3. p_+ and p_- are real and distinct if c < 1/4

The Case c > 1/4

In this case the graph of Q_c never intersects the line y = x. For any choice of x_0 the orbit of x_0 under Q_c will tend to infinity. The graphical analysis to the right exhibits the case for c = .5 and $x_0 = 0$.

In this case there is only one fixed point, p = 1/2, and it is a neutral fixed point since $Q'_c(x) = 2x \Rightarrow Q'_c(1/2) = 1$.

Figure: $x_0 = 0$

Figure: $x_0 = 0.6$

The Case c < 1/4

Since $Q'_c(x) = 2x$ we have

$$Q_c'(p_+) = 2p_+ = 1 + \sqrt{1 - 4c} > 1.$$

So p_+ is always a repelling fixed point for Q_c . On the other hand,

$$Q_c'(p_-) = 2p_- = 1 - \sqrt{1 - 4c}.$$

Thus p_{-} will be attracting for some values of c and repelling for others. Some terminology: the quadratic family Q_c has a tangent, or saddle-node, bifurcation at c = 1/4. That is, for c > 1/4 there are no fixed points for Q_c ; at c = 1/4 there is a neutral fixed point for Q_c ; and if c < 1/4 there are two fixed points for Q_c , one attracting and one repelling.

Chapter 5 and 6 Lecture Notes	MAT335H1F Lec0101 Burbulla	
Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations	6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation	
The Fixed Point $ ho$ with $c < 1/4$		

1. p_{-} is an attracting fixed point for Q_c if

$$egin{aligned} |Q_c'(p_-)| < 1 & \Leftrightarrow & -1 < 1 - \sqrt{1 - 4c} < 1 \ & \Leftrightarrow & -2 < -\sqrt{1 - 4c} < 0 \ & \Leftrightarrow & 2 > \sqrt{1 - 4c} > 0 \ & \Rightarrow & 4 > 1 - 4c > 0 \ & \Leftrightarrow & 3 > -4c > -1 \ & \Leftrightarrow & -3/4 < c < 1/4 \end{aligned}$$

2. p_{-} is a neutral fixed point for Q_c if c = -3/4

3. p_{-} is a repelling fixed point for C_c if c < -3/4.

The Interval $[-p_+, p_+]$, for $c \leq 1/4$

Since $Q_c(-x) = Q_c(x)$, the fate of any orbit of $-x_0$ under Q_c is always the same as the fate of the orbit of x_0 under Q_c . In particular,

$$Q_c(-p_+)=Q_c(p_+)=p_+,$$

so $-p_+$ is an eventual fixed point for Q_c . We have seen that for $x_0 > p_+$ the orbit of x_0 under Q_c tends to infinity. Likewise, if $x_0 < -p_+$ the orbit of x_0 under Q_c will also tend to infinity. Thus for any seed

$$x_0 \notin [-p_+, p_+]$$

the orbit under Q_c tends to infinity. The next slide illustrates this result for the case c = -1/4 and $|x_0| = 1.25$. Aside: if c = -1/4,

$$p_+ = rac{1+\sqrt{2}}{2} \simeq 1.21.$$

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

- 6.1 Dynamics of the Quadratic Map
- 6.2 The Saddle-Node Bifurcation
- 6.3 The Period-Doubling Bifurcation

Figure: c = -1/4; $x_0 = -1.25$

If $x_0 \in [-p_+, p_+]$, for $c \le 1/4$.

All of the interesting dynamics occurs if $x_0 \in [-p_+, p_+]$, for $c \leq 1/4$. Note that

$$p_{-}=rac{1-\sqrt{1-4c}}{2}\in [-p_{+},p_{+}],$$

for $c \leq 1/4$. But, as we have seen above, p_- is only an attracting fixed point if

$$-\frac{3}{4} < c < \frac{1}{4}.$$

It can be proved that if $-3/4 \le c < 1/4$ and $x_0 \in [-p_+, p_+]$, then the orbit of x_0 under Q_c converges to the fixed point p_- . Two examples are illustrated in the next slide.

An Attracting 2-Cycle

What happens if $c \le -3/4$? Here are two graphical representations of the orbit of $x_0 = 0$ under $Q_{-4/5}$:

Chapter 5:	Fixed and Periodic points	6.1
	Chapter 6: Bifurcations	0.2 6.3

6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation

6.3 The Period-Doubling Bifurcation

Here are two more graphical representations, of the orbit of $x_0 = 0$ under $Q_{-6/5}$:

For both values, c = -4/5 or c = -6/5, the orbit appears to converge to an attracting 2-cycle. Why should this be?

Points of Prime Period 2, $c \leq -3/4$

$$Q_c^2(x) = x \iff (x^2 + c)^2 + c = x$$

$$\Leftrightarrow x^4 + 2cx^2 - x + c^2 + c = 0$$

$$\Leftrightarrow (x^2 - x + c)(x^2 + x + c + 1) = 0 \text{ (Why?)}$$

$$\Leftrightarrow x = p_-, x = p_+ \text{ or } x = \frac{-1 \pm \sqrt{-3 - 4c}}{2}$$

Let

$$q_{-}=rac{-1-\sqrt{-3-4c}}{2}, \ \ q_{+}=rac{-1+\sqrt{-3-4c}}{2}.$$

Check that $Q'_c(q_-)Q'_c(q_+) = 4 + 4c$. Hence q_-, q_+ is an attracting two cycle if

$$|4+4c| < 1 \Leftrightarrow -rac{5}{4} < c < -rac{3}{4}.$$

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations 6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation

Chapter

The quadratic family Q_c is said to have a period-doubling bifurcation at c = -3/4. If c < -5/4, then the 2-cycle q_-, q_+ becomes a repelling 2-cycle. The dynamics then change again: there is another period-doubling bifurcation at c = -5/4. Here is an example, with $x_0 = 0$ and c = -1.35:

Definition of a Saddle-Node Bifurcation

A one-parameter family of functions F_{λ} has a tangent, or saddle-node, bifurcation in the open interval $I \subset \mathbb{R}$ at the parameter value λ_0 if there is an $\epsilon > 0$ such that

- 1. F_{λ_0} has one fixed point in *I* and this fixed point is neutral;
- 2. for all λ in one half of the interval $(\lambda_0 \epsilon, \lambda_0 + \epsilon)$, F_{λ} has no fixed points in *I*;
- 3. for all λ in the other half of the interval $(\lambda_0 \epsilon, \lambda_0 + \epsilon)$, F_{λ} has two fixed points in I, one attracting and one repelling.

Note: this definition describes a change in the fixed point structure of F_{λ} . Periodic points of F_{λ} can also have a tangent bifurcation: replace F_{λ} with F_{λ}^{n} for a cycle of period *n* in the above definition.

Chapter 5 and 6 Lecture Notes	MAT335H1F Lec0101 Burbulla
Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations	6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation
Example 1	

The quadratic family Q_c has a tangent bifurcation at $c_0 = 1/4$, since

- 1. $Q_{1/4}(x) = x^2 + 1/4$ has a fixed point, p = 1/2, which is a neutral fixed point;
- 2. Q_c has no fixed points for $1/4 < c < \infty$;
- 3. Q_c has two fixed points p_- and p_+ if -3/4 < c < 1/4, of which p_- is attracting and p_+ is repelling.

In terms of the definition, you can take $I = \mathbb{R}$ and $\epsilon = 1$.

6.1 Dynamics of the Quadratic Map

6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation

Graphs for Example 1

Figure: c = 1/2

Figure: c = 1/4

Figure: c = -1/2

From this sequence of graphs you can see why its called a tangent bifurcation.

Chapter 5 and 6 Lecture Notes MAT335H1F I

MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations 6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation

6.3 The Period-Doubling Bifurcation

Bifurcation Diagram for Example 1

For
$$c \leq 1/4$$
 we had

$$p_+ = \frac{1 + \sqrt{1 - 4c}}{2}$$

and

$$p_-=\frac{1-\sqrt{1-4c}}{2}.$$

The diagram to the right plots p_+, p_- as functions of c.

Figure: Bifurcation at $c_0 = 1/4$

Example 2

Let $E_{\lambda}(x) = e^{x} + \lambda$; this is called the exponential family. It has a tangent bifurcation in the interval \mathbb{R} at $\lambda = -1$:

- 1. If $\lambda > -1$ then $E_{\lambda}(x) > x$ for all x, so E_{λ} has no fixed points.
- 2. If $\lambda = -1$ then the equation of the tangent line to E_{-1} at x = 0 is y = x. Since $E'_{-1}(0) = e^0 = 1$, the fixed point x = 0 is a neutral fixed point.
- 3. If $\lambda < -1$ then the graph of E_{λ} intersects the line with equation y = x in two points, say p_1 and p_2 , with $p_1 < p_2$. Check that: $p_1 < 0$ and $p_2 > 1$;

$$0 < E_{\lambda}'(p_1) = e^{p_1} < 1; E_{\lambda}'(p_2) = e^{p_2} > 1;$$

so p_1 is always an attracting fixed point, and p_2 is always a repelling fixed point. In this example, any $\epsilon > 0$ is OK.

It is not easy to draw the bifurcation diagram for the exponential family, because you can't solve for x if $e^x + \lambda = x$ and $\lambda < -1$.

Example 3

 $F_{\lambda}(x) = \lambda x(1-x), \lambda \neq 0$ is called the logistic family. Its fixed points are easy to determine:

$$F_{\lambda}(x) = x \quad \Leftrightarrow \quad \lambda x(1-x) = x$$

$$\Leftrightarrow \quad x = 0 \text{ or } \lambda - \lambda x = 1$$

$$\Leftrightarrow \quad x = 0 \text{ or } x = \frac{\lambda - 1}{\lambda} = 1 - \frac{1}{\lambda}$$

Now

$$F_{\lambda}^{\prime}(0)=\lambda ext{ and } F_{\lambda}^{\prime}\left(1-rac{1}{\lambda}
ight)=2-\lambda,$$

as you may check. It can also be shown that for $0 < \lambda \leq 4$,

$$F_{\lambda}: [0,1] \longrightarrow [0,1].$$

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

If $\lambda = 1$ then the only fixed point of $F_{\lambda}(x)$ is x = 0 and it is neutral. If $0 < \lambda < 1$ then x = 0 is an attracting fixed point and $x = 1 - \frac{1}{\lambda}$ is repelling. But if $1 < \lambda < 3$, then x = 0 is the repelling fixed point and $x = 1 - \frac{1}{\lambda}$ is the attracting fixed point.

According to our definition, there is no tangent bifurcation point for the logistic family at $\lambda = 1$: there are two fixed points on each side of $\lambda = 1$. It makes no difference what you choose for the open interval *I* or for $\epsilon > 0$; you can't arrange F_{λ} for λ in one side of $(1 - \epsilon, 1 + \epsilon)$ to have no fixed points. However it is true that $F_1(x)$ is tangent to the line y = x at x = 0.

Definition of a Period Doubling Bifurcation

A one-parameter family of functions F_{λ} has a period-doubling bifurcation in the open interval $I \subset \mathbb{R}$ at the parameter value λ_0 if there is an $\epsilon > 0$ such that

- 1. for each $\lambda \in [\lambda_0 \epsilon, \lambda_0 + \epsilon]$, F_{λ} has a unique fixed point $p_{\lambda} \in I$;
- 2. for all λ in one half of the interval $(\lambda_0 \epsilon, \lambda_0 + \epsilon)$, including $\lambda = \lambda_0$, F_{λ} has no cycles of period 2 in I and p_{λ} is attracting (resp. repelling);
- 3. for all λ in the other half of the interval $(\lambda_0 \epsilon, \lambda_0 + \epsilon)$, excluding $\lambda = \lambda_0$, there is a unique 2-cycle $q_{\lambda}^1, q_{\lambda}^2 \in I$ with $F(q_{\lambda}^1) = q_{\lambda}^2$. This 2-cycle is attracting (resp. repelling). Meanwhile, the fixed point p_{λ} is repelling (resp. attracting).
- 4. As $\lambda \to \lambda_0$ both $q_{\lambda}^i \to p_{\lambda}$.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

- 6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation
- 6.3 The Period-Doubling Bifurcation

Remarks About the Definition

- 1. At a period doubling bifurcation one of two things happens: an attracting fixed point changes to a repelling fixed point while at the same time giving rise to an attracting 2-cycle; or a repelling fixed point changes to an attracting fixed point while at the same time giving rise to a repelling 2-cycle.
- 2. Whereas a tangent bifurcation occurs when the graph of F_{λ} is tangent to the line with equation y = x, a period-doubling bifurcation occurs when the graph of F_{λ} is perpendicular to the line with equation y = x, as will be illustrated by some examples. This implies that the graph of F_{λ}^2 is tangent to the line y = x when the bifurcation occurs:

$$(F_{\lambda_0}^2)'(p_{\lambda_0}) = F_{\lambda_0}'(F_{\lambda_0}(p_{\lambda_0}))F_{\lambda_0}'(p_{\lambda_0}) = (F_{\lambda_0}'(p_{\lambda_0}))^2 = (-1)^2 = 1.$$

Example 1

The quadratic family Q_c has a period doubling bifurcation at $c_0 = -3/4$. Why? Recall that

1.

$$p_-=\frac{1-\sqrt{1-4c}}{2}$$

is an attracting fixed point for $-3/4 \le c < 1/4$; and that

2.

$$q_{-}=rac{-1-\sqrt{-3-4c}}{2}, \ q_{+}=rac{-1+\sqrt{-3-4c}}{2}$$

is an attracting 2-cylce if -5/4 < c < -3/4, for which p_- is now repelling.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

The following graphical analyses illustrate how the orbit of $x_0 = 0.8$ converges to a fixed point for $Q_{-0.6}$ but is attracted to a

2-cyle for $Q_{-0.8}$:

Figure: c = -0.6; $x_0 = 0.8$

Chapter 5: Fixed and Periodic points **Chapter 6: Bifurcations**

6.1 Dynamics of the Quadratic Map

6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation

The Graphs of Q_c^2 for Example 1

Figure: c = -3/5 Figure: c = -3/4 Figure: c = -1

 $Q_{-3/4}^2(x)$ is tangent to the line y = x at $p_- = -1/2$.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

- 6.1 Dynamics of the Quadratic Map
- 6.2 The Saddle-Node Bifurcation
- 6.3 The Period-Doubling Bifurcation

Other Graphs for Example 1

Figure: $Q_{-3/4}$ is perpendicular to the line with equation y = xat x = -1/2.

Figure: Bifurcation diagram for Q_c , -2 < c < 1

Example 2: the Exponential Family $E_{\lambda}(x) = e^{x} + \lambda$

The exponential family has no period doubling bifurcation because it has no points of prime period 2 at all.

$$E_{\lambda}^{2}(x) = x \quad \Rightarrow \quad e^{e^{x} + \lambda} + \lambda = x$$

$$\Rightarrow \quad e^{e^{x} + \lambda} = x - \lambda$$

$$\Rightarrow \quad e^{x} + \lambda = \ln(x - \lambda)$$

Observe that $E_{\lambda}^{-1}(x) = \ln(x - \lambda)$. Now, the only intersection points of an increasing function and its inverse function are on the line with equation y = x. So every point of period 2 for E_{λ} is actually a fixed point for E_{λ} . In general, you can prove that if F is increasing and $F^2(x) = x$ then F(x) = x. Suppose F(x) < x, then $F^2(x) < F(x) < x$, a contradiction. Similarly if F(x) > x.

Figure: $E_{-2}(x) = e^x - 2$ Figure: $F(x) = x^3$ Figure: $G(x) = -x^3$

Neither E_{-2} nor F have points of prime period 2. G is invertible and decreasing and does have a 2-cycle: 1 and -1.

Example 3: the Logistic Family $F_{\lambda}(x) = \lambda x(1-x)$.

There is a period doubling bifurcation at $\lambda_0 = 3$. Check that

$$p_{\lambda} = 1 - 1/\lambda;$$

and

$$q_\lambda^1 = rac{\lambda+1+\sqrt{\lambda^2-2\lambda-3}}{2\lambda}$$

$$q_\lambda^2 = rac{\lambda+1-\sqrt{\lambda^2-2\lambda-3}}{2\lambda}$$

is the 2-cycle. What should I and ϵ be? Also: see exercises.

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

- 6.1 Dynamics of the Quadratic Map
- 6.2 The Saddle-Node Bifurcation
- 6.3 The Period-Doubling Bifurcation

Example 4:
$$F_\lambda(x)=\lambda x-x^3$$
; $F'(x)=\lambda-3x^2$

$$F_{\lambda}(x) = x \Leftrightarrow x^3 = x(\lambda - 1) \Leftrightarrow x = 0 \text{ or } x = \pm \sqrt{\lambda - 1}.$$

Since

$$F_{\lambda}'(0) = \lambda$$
 and $F_{\lambda}'(\pm \sqrt{\lambda - 1}) = 3 - 2\lambda,$

x=0 is attracting if $-1<\lambda<1$ and repelling if $\lambda>1$ or $\lambda<-1.$ The two fixed points

$$x = \pm \sqrt{\lambda - 1}$$

only exist if $\lambda > 1$; they are attracting if $1 < \lambda < 2$ and repelling if $\lambda > 2$.

Devaney's 2-Cycle for $F_{\lambda}(x) = \lambda x - x^3$

Period 2 points occur if $\lambda > -1$:

$$F_{\lambda}(x) = -x \Rightarrow F_{\lambda}^{2}(x) = F_{\lambda}(F_{\lambda}(x)) = F_{\lambda}(-x) = -F_{\lambda}(x) = -(-x) = x;$$

hence the two non-zero solutions to $F_{\lambda}(x) = -x$, namely

$$x=\pm\sqrt{\lambda+1},$$

form a 2-cycle for F_{λ} , which is always repelling. See the exercises. So the family F_{λ} has a period-doubling bifurcation at $\lambda_0 = -1$: the fixed point x = 0 is repelling if $\lambda < -1$, attracting if $\lambda > -1$; and there is no 2-cycle for $\lambda < -1$, but there is a repelling 2-cycle if $\lambda > -1$.

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations 6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation

Correct Version of Figure 6.15, page 65

Here is the bifurcation diagram for $F_{\lambda}(x) = \lambda x - x^3, -2 \le \lambda \le 1$:

For some reason, in the book Figure 6.15 has the functions

$$x = \pm \sqrt{\lambda + 1}$$

opening to the left!

The Other 2-Cycles for F_{λ}

But there are more period 2 points. To find all of them you have to solve $F_{\lambda}^2(x) = x$:

$$F_{\lambda}^{2}(x) = x$$

$$\Leftrightarrow \quad \lambda^{2}x - \lambda x^{3} - \lambda^{3}x^{3} + 3\lambda^{2}x^{5} - 3\lambda x^{7} + x^{9} - x = 0$$

$$\Leftrightarrow \quad x(x^{4} - x^{2}\lambda + 1)(x^{2} - \lambda - 1)(x^{2} - \lambda + 1) = 0$$

$$\Leftrightarrow \quad x = 0 \text{ or } x^{2} = \lambda + 1 \text{ or } x^{2} = \lambda - 1 \text{ or } x^{2} = \frac{\lambda \pm \sqrt{\lambda^{2} - 4}}{2}$$

Five of these solutions are the previously calculated fixed points and 2-cycle for F_{λ} . The other four provide two more 2-cycles:

$$\sqrt{rac{\lambda\pm\sqrt{\lambda^2-4}}{2}} ext{ and } -\sqrt{rac{\lambda\pm\sqrt{\lambda^2-4}}{2}}.$$

Chapter 5 and 6 Lecture Notes MAT335H1F Lec0101 Burbulla

Chapter 5: Fixed and Periodic points Chapter 6: Bifurcations

6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation

6.3 The Period-Doubling Bifurcation

Bifurcation Diagram for Example 4, $-2 \le \lambda \le 4$.

Check that:

- 1. The new 2-cycles only exist if $\lambda \geq 2$.
- 2. The fixed points $\pm \sqrt{\lambda 1}$ are attracting if $1 < \lambda < 2$, and repelling if $\lambda > 2$.
- 3. The new 2-cycles are both attracting if $2 < \lambda < \sqrt{5}$.

So F_{λ} has two period doubling bifurcations at $\lambda_0 = 2$; one in the interval $I_1 = (0.8, 1.2)$ and one in the interval $I_2 = (-1.2, -0.8)$.