MAT246H1S Lec0101 Burbulla

Chapter 4 Lecture Notes
The Fundamental Theorem of Arithmetic

Winter 2019

Chapter 4 Lecture Notes The Fundamental Theorem of Arithr MAT246H1S Lec0101 Burbulla

Chapter 4: The Fundamental Theorem of Arithmetic

Chapter 4: The Fundamental Theorem of Arithmetic

4.1: Proof of The Fundamental Theorem of Arithmetic

What is the Fundamental Theorem of Arithmetic?

As we saw in Chapter 2, Theorem 2.2.4 stated that every natural number other than 1 is a product of prime numbers. So for example

- 1. $144 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2^4 \cdot 3^2$.
- 2. $3,978 = 2 \cdot 3 \cdot 3 \cdot 13 \cdot 17 = 2 \cdot 3^2 \cdot 13 \cdot 17$
- 3. $40,041 = 3 \cdot 3 \cdot 3 \cdot 1483 = 3^3 \cdot 1483$

Of course, finding the factors may not be easy. However, one thing we can establish is that for every natural number its prime factors are uniquely determined. That is, the *only* prime factors of 144 are 2 and 3; the *only* prime factors of 3,978 are 2,3,13 and 17; the *only* prime factors of 40,041 are 3 and 1,483. This fact is known as the Fundamental Theorem of Arithmetic, and we shall prove it by contradiction.

Chapter 4 Lecture Notes The Fundamental Theorem of Arithm MAT246

MAT246H1S Lec0101 Burbulla

Chapter 4: The Fundamental Theorem of Arithmetic

4.1: Proof of The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic

Theorem 4.1.1: Every natural number greater than 1 can be written as a product of primes, and the expression of a number as a product of primes is unique except for the order of the factors.

Comment: the first statement is just Theorem 2.2.4. What remains to show is that the expression of a number as a product of primes is *unique*, except for the order of primes. There are at least two approaches in mathematics to show that something is unique:

- 1. suppose that you have two of them, and then show they must equal each other; or
- 2. suppose that you have two of them, and then derive a contradiction.

We will use the second approach.

Proof of the Fundamental Theorem of Arithmetic

Proof: by contradiction. Let T be the set of numbers that have at least two different representations as a product of primes. Suppose $T \neq \emptyset$. By the well-ordering principle there is a least number in T, call it N, that has at least two different representations as a product of primes. That is, there are primes p_1, p_2, \ldots, p_r and other primes q_1, q_2, \ldots, q_s , such that

$$N = p_1 \cdot p_2 \cdots p_r = q_1 \cdot q_2 \cdots q_s$$
.

Neither r nor s can be 1: if r=s=1, then $N=p_1=q_1$ and the two representations are the same; and if r=1 and s>1, then $N=p_1=q_1\cdot q_2\cdots q_s$, contradicting the fact that p_1 is prime. In fact $\{p_1,p_2,\ldots,p_r\}\cap\{q_1,q_2,\ldots,q_s\}=\emptyset$, for if $p_i=q_j=p$, then N/p< N and N/p would also be in T, contradicting the fact that N is the least element in T. In particular, we know $p_1\neq q_1$. One of these two primes must be less than the other; assume $p_1< q_1$.

Chapter 4 Lecture Notes The Fundamental Theorem of Arithm MAT246H1S Lec0101 Burbulla

Chapter 4: The Fundamental Theorem of Arithmetic

4.1: Proof of The Fundamental Theorem of Arithmetic

Let $M = N - p_1 \cdot q_2 \cdot q_3 \cdot \cdots \cdot q_s < N$. Substituting for N as a product of the p_i primes we have

$$M = p_1 \cdot p_2 \cdots p_r - p_1 \cdot q_2 \cdot q_3 \cdots q_s = p_1(p_2 \cdots p_r - q_2 \cdot q_3 \cdots q_s),$$

implying that p_1 divides M. (In particular, M > 1.) Since M < N, M has a unique factorization into primes. Now substitute for N as a product of the q_i primes to obtain

$$M=q_1\cdot q_2\cdots q_s-p_1\cdot q_2\cdot q_3\cdots q_s=(q_1-p_1)\cdot q_2\cdots q_s,$$

and the unique factorization of M into primes must be the unique factorization of q_1-p_1 into primes, times q_2,q_3,\ldots,q_s . Since p_1 divides M and $p_1\neq q_j$, we know that p_1 divides q_1-p_1 . So there is a number p_1 such that

$$q_1 - p_1 = p_1 \cdot n \Leftrightarrow q_1 = p_1 + p_1 \cdot n \Leftrightarrow q_1 = p_1(1+n).$$

This implies that p_1 divides q_1 , which contradicts the fact that they are distinct primes. Thus $T = \emptyset$. \square

Two Corollaries of the Fundamental Theorem of Arithmetic

Corollary 4.1.2: every natural number n greater than 1 has a canonical factorization into primes: that is

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_r^{\alpha_r},$$

where each p_i is a prime, $p_i < p_{i+1}$, and α_i is a natural number.

Example: $60,368 = 2^4 \cdot 7^3 \cdot 11$. Also, see the examples at the beginning of this section.

Corollary 4.1.3: if p is a prime and a and b are natural numbers such that p divides $a \cdot b$, then p divides a or p divides b.

Example: $7 \mid 294 = 6 \cdot 49$ so $7 \mid 6$ or $7 \mid 49$. Which is it? $7 \mid 49$.

Warning: $18 \mid 270 = 30 \cdot 9$ but 18 divides neither 30 nor 9.

Chapter 4 Lecture Notes The Fundamental Theorem of Arithr MAT246H1S Lec0101 Burbulla

Chapter 4: The Fundamental Theorem of Arithmetic

4.1: Proof of The Fundamental Theorem of Arithmetic

Proof of Corollary 4.1.3

Since $p \mid ab$ there is natural number d such that ab = pd. So the unique factorization of ab into a product of primes includes the prime p. On the other hand, there are primes p_i and q_i such that

$$a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdots p_r^{\alpha_r}$$
 and $b=q_1^{\beta_1}\cdot q_2^{\beta_2}\cdots q_s^{\beta_s},$

which means

$$ab = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_r^{\alpha_r} \cdot q_1^{\beta_1} \cdot q_2^{\beta_2} \cdots q_s^{\beta_s}.$$

Thus the prime *p* must be present in the factors on the right hand side:

- 1. p could be p_i , for some i, in which case $p \mid a$; or
- 2. p could be q_j , for some j, in which case $p \mid b$; or
- 3. p could be both p_i for some i and q_j for some j, in which case $p \mid a$ and $p \mid b$.