Functions Test Solutions.

Answers to the Test:

1. F 2. T
2. T
3. F
4. A
5. C
6. B
7. B
8. D

Solutions and Comments:

1. There are exactly three real solutions to the equation $x^{3}=1-x$; this is False.

Any solution to this equation would represent an intersection point on the graphs of $y=x^{3}$ and $y=1-x$. The graphs are to the right. There is only one intersection point. So the solution to the equation $x^{3}=1-x$ is somewhere between $x=0$ and $x=1$. Note: there are three solutions to the equation if you permit complex solutions.

2. There are exactly three real solutions to the equation $3^{x}=4 x^{2}$; this is True.

But it's not obvious. You can use the same approach as in the previous question. The graphs of $y=3^{x}$ and $y=4 x^{2}$ are to the right: the quadratic is in green; the exponential is in red. You can see that there are three intersection points.

3. The range of the graph with equation $x^{2 / 3}+y^{2 / 3}=4$ is $-8 \leq y \leq 8$; this is True.

$$
0 \leq x^{2 / 3}=4-y^{2 / 3} \Rightarrow y^{2 / 3} \leq 4 \Rightarrow y^{2} \leq 64 \Rightarrow|y| \leq 8 \Rightarrow-8 \leq y \leq 8
$$

4. If a sequence F_{n} is defined by $F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, then $F_{6}=6$; this is False.
Aside: this is the Fibonacci sequence. Compute:

$$
F_{2}=F_{1}+F_{0}=1 ; F_{3}=F_{2}+F_{1}=2 ; F_{4}=F_{3}+F_{2}=3 ; F_{5}=F_{4}+F_{3}=5 ; F_{6}=F_{5}+F_{4}=8
$$

5. The inverse of the function $f(x)=\frac{2 x+3}{x-5}$ is $f^{-1}(x)=\frac{5 x+3}{x-2}$.

To find the inverse of $y=f(x)$ interchange x and y and solve for y :

$$
\begin{aligned}
x=\frac{2 y+3}{y-5} & \Rightarrow x(y-5)=2 y+3 \\
& \Rightarrow x y-5 x=2 y+3 \\
& \Rightarrow x y-2 y=5 x+3 \\
& \Rightarrow y(x-2)=5 x+3 \\
& \Rightarrow y=\frac{5 x+3}{x-2}
\end{aligned}
$$

6. The number of asymptotes to the graph of $f(x)=\frac{x^{2}+1}{x+1}$ is 2 .

$$
f(x)=\frac{x^{2}+1}{x+1}=x-1+\frac{2}{x+1}
$$

by long division. So

$$
x=-1
$$

is a vertical asymptote to the graph of f, and

$$
y=x-1
$$

is a slant asymptote to the graph of f. See the graph to the right.

7. If $g(x)=\frac{1}{x}$ and $h \neq 0$, then $\frac{g(x+h)-g(x)}{h}=\frac{-1}{x(x+h)}$.

Straight simplification:

$$
\begin{aligned}
\frac{g(x+h)-g(x)}{h} & =\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\frac{\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\frac{-h}{h x(x+h)} \\
& =\frac{-1}{x(x+h)}
\end{aligned}
$$

8. Let $f(x)=3 x-2$, let $g(x)=x^{2}-1$. Then $f(g(x))=3 x^{2}-5$.

$$
f(g(x))=f\left(x^{2}-1\right)=3\left(x^{2}-1\right)-2=3 x^{2}-3-2=3 x^{2}-5 .
$$

9. If $|2 x-4| \leq|x+3|$, then $\frac{1}{3} \leq x \leq 7$.

One way to solve this is to plot graphs. To the right, the red graph is the graph of

$$
y=|2 x-4|
$$

and the green graph is the graph of

$$
y=|x+3|
$$

You can see that the red graph is below the green graph for

$$
\frac{1}{3} \leq x \leq 7
$$

Or you can solve the inequality algebraically, using $|z|^{2}=z^{2}$ to eliminate the absolute value signs.

$$
\begin{aligned}
|2 x-4| \leq|x+3| & \Leftrightarrow|2 x-4|^{2} \leq|x+3|^{2} \\
& \Leftrightarrow(2 x-4)^{2} \leq(x+3)^{2} \\
& \Leftrightarrow 4 x^{2}-16 x+16 \leq x^{2}+6 x+9 \\
& \Leftrightarrow 3 x^{2}-22 x+7 \leq 0 \\
& \Leftrightarrow(3 x-1)(x-7) \leq 0 \\
& \Leftrightarrow \frac{1}{3} \leq x \leq 7
\end{aligned}
$$

