
University of Toronto

MAT301H1S - Groups and Symmetry

Solutions to Term Test, March 4, 2020

Duration: 120 minutes. Aids permitted: None.

Observations:

• Questions 1, 2, 3, 4, 9 and 10 all had passing averages. The average on these six questions was 72%.

• Questions 5, 7 and 8, which all involved proofs, had a failing average of 39%—not unexpected.

• Question 6, which was actually a computational question, was horribly done; the average was 10%.

•

Breakdown of Results: 186 students wrote this test. The marks ranged from 20% to 100%, and the

average was 55.6%. There was one perfect paper. Some statistics on grade distribution are in the table on

the left, and a histogram of the marks (by decade) is on the right.

Grade % Decade %

90-100% 1.6%

A 10.2% 80-89% 8.6%

B 9.1% 70-79% 9.1%

C 16.7% 60-69% 16.7%

D 29.0% 50-59% 29.0%

F 35.0% 40-49% 19.4%

30-39% 9.1%

20-29% 6.5%

10-19% 0.0%

0-9% 0.0%
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1. [2 marks for each part; avg: 7.2/10] Let G be a group with operation ‘multiplication’ and identity

element e. Define the following:

(a) the center of G

Solution: the center of G is {g ∈ G | gx = xg, for all x ∈ G}

(b) the order of a ∈ G

Solution: the order of a is the least positive integer n such that an = e.

(c) an inner automorphism of G

Solution: for g ∈ G, the function fg : G −→ G defined by

fg(x) = gxg−1

is an inner automorphism of G.

(d) the centralizer of a ∈ G

Solution: the centralizer of a is {x ∈ G | xa = ax}

(e) the index in G of the subgroup H.

Solution: the index in G of H is the number of distinct (left) cosets of H.
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2. [2 marks for each part; avg: 7.7/10] Find the order of the following elements in the following groups.

You should put your answer in the blank to the right, but you must show your work to get full marks.

(a) 11 in Z99 Order: 9

Solution:

|11| = |11 · 1| = 99

gcd(99, 11)
=

99

11
= 9.

(b) 5 in U(18) Order: 6

Solution: |U(18)| = φ(18) = φ(2)φ(9) = 1 · 6 = 6, so |5| = 2, 3 or 6.

52 = 25 ≡ 7 (mod 18); 53 ≡ 35 ≡ −1 (mod 18).

So |5| must be 6.

(c)

[
cos(π/5) − sin(π/5)

sin(π/5) cos(π/5)

]
in O(2,R) Order: 10

Solution: a rotation of π/5 has order 2π/(π/5) = 10.

Or in terms of degrees: a rotation of 36◦ has order 360◦/36◦ = 10.

(d)

(
1 2 3 4 5 6 7

4 5 6 7 3 2 1

)
in S7 Order: 12

Solution: write the permutation as a product of disjoint cycles.(
1 2 3 4 5 6 7

4 5 6 7 3 2 1

)
= (147) (2536).

So the order is lcm(3, 4) = 12.

(e) (3, 5) in Z6 ⊕ Z9 Order: 18

Solution: |(3, 5)| = lcm(|3|, |5|) = lcm(2, 9) = 18.
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3. [2 marks for each part; avg: 6.6/10.] Determine whether the following pairs of groups are isomorphic

or not. You should circle Yes or No to the right, but you must also give a brief reason for your choice.

(a) D4 and A4. Yes No

Solution: |D4| = 8 6= 12 = |A4|

(b) U(9) and Aut (Z9). Yes No

Solution: specific case of the Theorem

Aut (Zn) ≈ U(n).

(c) U(16) and Q. Yes No

Solution: Q only has one element of order 2, namely −1, but U(16) has at least two:

72 = 49 ≡ 1 (mod 16) and 92 = 81 ≡ 1 (mod 16).

(d) Z12 and Z3 ⊕ Z4 Yes No

Solution: because 3 and 4 are relatively prime, Z12 ≈ Z3 ⊕ Z4.

(e) S4 and D12. Yes No

Solution: D12 has (four) elements of order 12 but S4 has no elements of order 12, since a

permutation of {1, 2, 3, 4} can only have order 1, 2, 3 or 4. (That is, S4 consists of the identity,

2-cycles, pairs of disjoint 2-cycles, 3-cycles or 4-cycles.)
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4. [avg: 8.7/10] Let σ = (123)(246)(125)(1345) be an element of S6.

(a) [3 marks] Express σ as a product of disjoint cycles.

Solution:

σ = (123)(246)(125)(1345) = (1) (254) (36) = (254) (36)

(b) [2 marks] Find |σ|.

Solution: |σ| = lcm(3, 2) = 6.

(c) [3 marks] Express σ as a product of 2-cycles. Is σ even or odd?

Solution: σ = (254) (36) = (24) (25) (36); so σ is odd.

(d) [2 marks] Express σ−1 as a product of disjoint cycles.

Solution: using answer from part (a).

σ−1 = ((254) (36))−1 = (36)−1 (254)−1 = (36) (245).
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5. [avg: 4.3/10] Prove the following:

(a) [3 marks] If G is a group such that the map φ : G −→ G defined by φ(g) = g−1 is a homomor-

phism, then G is Abelian.

Proof: let g, h ∈ G. Then

φ(gh) = φ(g)φ(h)⇒ (gh)−1 = g−1 h−1 ⇒ (gh)−1 = (hg)−1 ⇒ gh = hg,

so G is Abelian.

(b) [4 marks] Let G and H be finite groups and suppose φ : G −→ H is a homomorphism which is

onto.1 If H has an element of order n then G also has an element of order n.

Proof: let h ∈ H with |h| = n. Since φ is onto, there is g ∈ G such that φ(g) = h. By a property

of homomorphisms proved in class (or in the book), we know

|φ(g)| divides |g|.

Since |φ(g)| = n, we have |g| = k n, for some integer k ≥ 1. Then gk ∈ G and∣∣∣gk∣∣∣ =
kn

gcd(kn, k)
=
kn

k
= n.

(c) [3 marks] If G is a group such that |G| = p, for some prime number p, then G is cyclic.

Proof: pick g ∈ G such that g 6= e, and consider the subgroup 〈g〉. By Lagrange’s Theorem,

|〈g〉| divides p.

Since p is prime, and |〈g〉| 6= 1,

|〈g〉| = p⇒ G = 〈g〉,

and G is cyclic.

1Same as surjective.
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6. [10 marks; avg: 1/10] Find the number of homomorphisms from Z6 to A7. (Be careful: A7 is not S7.)

Solution: Z6 = 〈1〉, so a homomorphism f : Z6 −→ A7 is completely determined by f(1). Since

|f(1)| must divide |1| = 6 and |f(1)| must divide |A7| = 2520, there are four possibilities for |f(1)| :

Case 1: |f(1)| = 1. In this case, the only possibility is f(1) = ε, the identity permutation.

Case 2: |f(1)| = 2. Since f(1) must be of order 2, and in A7,

f(1) = (ab)(cd),

a product of two disjoint 2-cycles. The number of such permutations is

7× 6

2
× 5× 4

2
× 1

2
= 105.

Case 3: |f(1)| = 3. Since f(1) must be of order 3 and in A7,

f(1) = (abc) or f(1) = (abc)(def),

a single 3-cycle or a product of two disjoint 3-cycles. The number of such permutations is

7× 6× 5

3
+

7× 6× 5

3
× 4× 3× 2

3
× 1

2
= 70 + 280 = 350.

Case 4: |f(1)| = 6. Since f(1) must be of order 6 and in A7,

f(1) = (abc)(de)(fg),

a product of a 3-cycle and two 2-cycles, all disjoint. The number of such permutations is

7× 6× 5

3
× 4× 3

2
× 2× 1

2
× 1

2
= 210.

Conclusion: the total number of homomorphisms from Z6 to A7 is 1 + 105 + 350 + 210 = 666.
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7. [avg: 4/10] Let G be a group with identity element e. Let H and K be finite subgroups of G such that

|H| = m and |K| = n, with gcd(m,n) = 1.

(a) [4 marks] Show that H ∩K = {e}.

Proof: let d = |H ∩K|. Since H ∩K ≤ H and H ∩K ≤ K we have

d|m and d|n.

But m and n are relatively prime, so d = 1. That is, H ∩K = {e}.

(b) [6 marks] Suppose in addition that |G| = mn. Show that for every g ∈ G, g 6= e, there are unique

elements h ∈ H and k ∈ K such that g = hk.

Proof: HK = {hk | h ∈ H, k ∈ K} is a subset of G and

|HK| = |H||K|
|H ∩K|

=
mn

1
= mn.

If |G| = mn, then G = HK, as a set. Let g ∈ G and suppose

g = h1k1 and g = h2k2,

for some h1, h2 ∈ H, k1, k2 ∈ K. Then

h1k1 = h2k2 ⇒ k1k
−1
2 = h−1

1 h2 ∈ H ∩K = {e}

⇒ k1k
−1
2 = e and h−1

1 h2 = e

⇒ k1 = k2 and h2 = h1 (QED)

Page 8 of 14 Continued...



8. [avg: 3.4/10]

8.(a) [5 marks] Let G be a finite group with operation ‘multiplication.’ Let H be a non-empty subset of

G that is closed under multiplication: g, h ∈ H ⇒ gh ∈ H. Prove H ≤ G.

Proof: H is given to be a non-empty subset of G closed under multiplication. All we need to show

is that H contains the identity, e, and that H is closed under inverses. We can do this in three steps:

1. For g ∈ H and h = g we have g2 ∈ H. Then by taking h = g2 we can conclude that g3 ∈ H.
Similarly (by induction if you will), gm ∈ H for all positive integers m.

2. Let |G| = n and suppose g ∈ H ≤ G. Then gn = e, and by (1), e ∈ H.

3. Let g ∈ H. By (2), gn = e. Then g−1 = gn−1 ∈ H, by (1).

So H ≤ G.

8.(b) Let k be a positive integer.

(i) [2 marks] Let p be a prime number. Give an example of a group G with order pk such that every

non-identity element in G has order p.

Example:

G = Zp ⊕ Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
k times

(ii) [3 marks] Let n ≥ 2. Show that if G is a group of order nk such that every non-identity element

of G has order n, then n must be a prime.

Proof: suppose e 6= g ∈ G and |g| = n. Suppose n is not prime. Then n has divisors a, b such

that n = a b with 1 < a, b < n. Then

|ga| = n

gcd(n, a)
=
n

a
= b < n,

which contradicts the assumption that all non-identity elements of G have order n. Thus n must

be prime.
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9. [10 marks; avg: 7.4/10] Every element in D5 can be considered as

a permutation of the five vertices of a regular pentagon. See the

diagram to the right. Identify the subgroup G of ten permutations

in S5 that is isomorphic to D5, and interpret them geometrically

as rotations or reflections of the pentagon. (Be specific: Through

how many degrees is each rotation? What is the axis of symmetry

of each reflection?) Find stabG(2) and orbitG(2). 1

2

5

4

3

0

Solution: label the centre of the pentagon with 0.

rotation permutation: degrees reflection permutation: axis

identity or 5-cycle around centre pair of disjoint 2-cycles of reflection

(1) 0◦ (12)(35) line through 0 and 4

(12345) 72◦ (13)(45) line through 0 and 2

(13524) 144◦ (34)(52) line through 0 and 1

(14253) 216◦ (14)(23) line through 0 and 5

(15432) 288◦ (24)(15) line through 0 and 3

Finally

stabG(2) = {(1), (13)(45)}, orbitG(2) = {1, 2, 3, 4, 5}.
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10. [avg: 5.4/10] Let Y =

[
0 −1

1 0

]
.

(a) [4 marks] Find C(Y ), the centralizer of Y in GL(2,R).

Solution: let X =

[
a b

c d

]
∈ GL(2,R) such that XY = Y X. Then

[
a b

c d

][
0 −1

1 0

]
=

[
0 −1

1 0

][
a b

c d

]
⇔

[
b −a
d −c

]
=

[
−c −d
a b

]
.

so we must have d = a and b = −c. Thus

X =

[
a −c
c a

]
and C(Y ) =

{[
a −c
c a

]∣∣∣∣∣ a2 + c2 6= 0, a, c ∈ R

}
.

(b) [2 marks] Explain why H = {A ∈ C(Y ) | det(A) = 1} is a subgroup of C(Y ).

Solution: you can use the subgroup test OR simply observe that for det : GL(2,R) −→ R∗

H = C(Y ) ∩ ker(det),

and the intersection of two subgroups is itself a subgroup.

(c) [4 marks] Find a homomorphism f : C(Y ) −→ C(Y ) such that ker(f) = H, and show that your

answer is correct. What is im (f)? BONUS: To which subgroup of R∗ is im (f) isomorphic?

Solution: define f : C(Y ) −→ C(Y ) by f(A) = det(A) I. Then:

• f(A) is in C(Y ), since kI commutes with every matrix in GL(2,R).

• f is a homomorphism:

f(AB) = det(AB) I = det(A) det(B) I = det(A) I det(B) I = f(A)f(B).

• ker(f) = H:

ker(f) = {A ∈ C(Y ) | f(A) = I} = {A ∈ C(Y ) | det(A) I = I} = {A ∈ C(Y ) | det(A) = 1} = H.

Finally,

im (f) = {f(A) | A ∈ C(Y )} = {(a2 + c2) I | a2 + c2 6= 0} = {xI | x > 0} ≈ {x ∈ R∗ | x > 0}.
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This page is for rough work or for extra space to finish a previous problem. It will not be marked unless

you have indicated in a previous question to look at this page.
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