MAT246H1S LEC0101 - Concepts In Abstract Mathematics

Solutions to Term Test 2 - March 13, 2019

Time allotted: 105 minutes. Aids permitted: None.
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1.(a) [3 marks| Define the Euler ¢ function.
)
4
Solution: let m be a natural number greater than 1. ¢(m) is the number of elements in the set

b v A

7{1,2,3,...,m — 1} which are relatively #p”r‘_,lmrﬂx_l_‘e to m.
N C )
1.(b) [4 marks] Calculate ¢(675). , }

D]
/

-
Solution: the prime factorization of 675 is 675 = 3% - 52, so
$(675) = ¢(3%)p(5%) = (3% — 3?%) - (52 — 5) = 18- 20 = 360..
1.(c) [3 marks] Suppose m is a natural number with m > 1. Prove that ¢(m) = m — 1 if and only if m is

a prime.

Proof: suppose m is prime. It was proved in the book that ¢(m) =m — 1. @

OR;}Suppose m is prime and k is a number in the set {1,2,...,m — 1}. If ged(k,m) = d, then in
particular d divides m, which means d = 1 or d = m. But d also divides k and £ < m. So d = 1 for
| each k and consequently ¢(m) =m — 1. 2 i %5/4/ St it

; o~ Conversely, suppose every number k in the set {1,2,...,m—1} is relatively prime to m. In particular,
é\(—? J if k> 1 then k cannot divide m; otherwise ged(m, k) = k. Thus m has no divisors other than 1 and

itself. That is, m is prime.
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2.(a) [2 marks] State Euler’s Theorem. .
e . . o,
Solution: if m is a natural number greater than 1 and a is a natural number that is relatively prime

to m, then a®™ = 1 (mod m). o

2.(b) [3 marks] Calculate the multiplicative inverse of 3'% modulo 16. Give your answer as a natural

number less than 16.

Solution: since 3 and 16 are relatively prime, and ¢(16) = $(24) = 2% — 23 = 8, Euler’s Theorem

implies v Q}
3% =1 (mod 16).

Thus (3%)3 = 3% = 1 (mod 16), which means a multiplicative inverse of 319 is 35. But

w
so the answer is 3. L//)

Iy

35=3%.3=1-3(mod 16), @

2.(c) [6 marks] Suppose that a and m are relatively prime natural numbers, m > 1, and k is the smallest
natural number such that a® =1 (mod m). Prove that k divides ¢(m).

0
_ Proof: by Euler’s Theorem, a?(™) = 1 (modm). Thus, by definition of k, we have k< d(m).

/‘ /Suppose k does not divide ¢(m). Then by the division algorithm there are natural numbers n and r
such that r < k and

d(m)y=n-k+r

Consequently

e

ad)(m) — an-k+r — (ak)n ca”

and

(@"-a" = a®™ (modm) (1}/47 s
= (1)"-a" = 1 (modm) (// (//)/Mfl e
i
=a = 1 (modm) al4? !

a* =1 (mod m). ¢ 1[7(7’/,7 /I )
o i ( ﬁ
Hence k must divide ¢(m). [ 6/}/},%’@ C/ l




3.(a) [6 marks] Use the Rational Roots Theorem to find all the rational roots of the polynomial

®

. \%‘%‘/

f(z) = 223 — 5% + 52 — 3.

Solution: if

r=—
n

is a rational root of f(x), in lowest terms, then by the Rational Roots Theorem, m must divide 3 and

n must divide 2. Thus m = %1 or +3; and n = +£1 or :I:‘“Zfﬁﬁ"’:[‘his gives eight possible rational roots r

of f(a:)However if r < 0 then f(r) < 0. So we need only check the four positive possibilities for r to
see if f(r) =0:

3
So the only rational root of f(z) is r = 5

ottt o, ,..,M

r f(r) is r a root?
1| 2-5+5-3=-1#0 no ! : \
112 5 5 3 | (%% £gﬂ
v’gl
2|8 atg 8= 70| o A -
L C h /é?cik 4 7
3|54—-45+15—-3=21%0 no 3
3| 54 45 15
5| g4ty 3=0 yes

3.(b) [4 marks] Find the non-rational solutions to the equation f(z) = 0. (They will be complex numbers.)

Solution: long division by the factor 2z — 3 gives

() = (20— B)(a? 2 + 1) éf

Using the quadratic formula, the non-rational roots of f(x) are

1+/1-4 1 A

2 2

Alternate Division: if the linear factor is taken to be z — 3/2, then

(@) = <a: - g) (2% — 22+ 2).

Of course the complex roots, are still the same.



4. [10 marks] Prove that the following numbers are irrational.

(a) [5 marks] ¥/5 + /3 @)

Proof: suppose v/5 + /3 = r, where r = — is a rational number. Then
n
J T e

Vsivi=r = For-v3

' = 5=(r—-v3°2=r’-32/34+9r-3V3
T P 4+9r—5
@) ) Jg_W,

which would imply that /3 is rational. [This contradicts the result proved in the book that g)

is irrational for every prime p. So \3/5.—}— v/3 must be irrational.

(b) [6 marks] v/n, if n =42 (mod5).

Proof: by contraposition. Suppose /n is rational. Then by a Theorem in the book, \/n = k, .
for some natural number k. Thus n = k2. Consider the five possibilities: )

2
1. if k = 0(mod5), then n = 0? = 0 (mod 5)
2. if k=1 (mod5), then n = 12 = 1 (mod 5)
27 3. if k =2 (mod5), then n = 22 = 4 (mod 5)
4. if k = 3(mod5), then n = 32 = 4 (mod 5)
5. if k =4 (mod5), then n = 42 = 1 (1mod 5)
That is, if v/n is rational, then n = 0,1 or 4 (mod 5).
Equivalently: if n = 2 or 3 (mod 5), then 1/n must be irrational.




5.(a) [3 marks] State De Moivre's Theorem.

@

Solution: for every natural number n and any real numbers r, 9

(r (cos()—l—zsm@

C/

R m————_r———

(cos(né’) + isin(nd)).

5.(b) [7 marks] Find all the roots of the polynomial 27 — 2.

Solution 1: z =0 or 28 =1. Let 2 = cosf + i sinf. Then 25 = 1 implies, by De Moivre’s Theorem,
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H\\The seven distinct solutions to 27 = z are

\\.\,__ MwMMM

z2=0, z==41, and z = +- + —

They are all plotted in the figure above left.

Solution 2: just factor.

2 —z=2(0—2) =2 - )P +1) =

Thus

=z =z

= z=0, z=41,

= z=0,z2==xl,z2=—

as before.

cos(66) + i sin(66) = 1

= 60=0+27k

Tk
= 0=—
3

1

The six distinet non-zero solutions for z

are given by

T 27 “
=20 i
b Tr? 37 3

1\/§M
)

2(z =12 +z+D(z+1)(z% — 2+ 1).

=0, z==41, 224+2+1=0, orz2—24+1=0
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6. [10 marks] An exercise in the textbook says that if p and ¢ are distinct primes, then the system of

congruernces

z = a (mod p), z =b(mod q)

has a unique solution modulo pq. Illustrate this result by solving the following system modulo 187 :
z =2(mod 11), z = 5(mod 17).
Solution:

z=2(mod 11) = z = 2+ 114, for some integer j. @

Then e

z =5 (mod 17) 24115 =5(mod 17)

AN
115 = 3 (mod 17) G/

(=3)-115 = —9 (mod 17) 2,,
y
j = 8(mod 17) e
Thus j = 8 + 17k, for some integer k, and so

©=2+11(8+17k) = 90 + 187k, @/)

[
L R

(since —33 =1 (mod 17))

for some integer k. Thus .

z =90 @

is the unique solution, modulo 187, to the given system of congruences.

Note: you could also find the multiplicative inverse of 11, modulo 17, as follows:

17 = 1-114+6
11 = 1-6+45
6 = 1-541,
implying
1=6-5=6—-(11-6)=2-6—-11=2(17-11)-11=2-17-3-11,

from which you can see that —3 (or 14) is the multiplicative inverse of 11, modulo 17.




7.(a) [5 marks] Assume that m is a natural number with m > 1. Prove that a has a multiplicative inverse

modulo m if and only if ¢ and m are relatively prime.
éj Proof: there is an integer x such that az =1 (mod m)
(Zf if and only if there is an integer y such that axz — 1 =ym
@ ifand only ifax —ym =1
@’ it and only if ged(a,m) =1,

@;j since if d divides both a and m then d divides az — y m = 1, which means d | 1.

7.(b) [ marks|] Assume that a and b are natural numbers greater than 1. Prove that ged(a,b) is the

smallest natural number n such that n is an integral linear combination of a and b.

Proof: let ged(a,b) = d. Let e be the smallest natural number n such that n is an integral linear

combination of ¢ and b. We claim e = d. To show this we shall show e < d and d < e.

@% e ¢ < d: since d = ged(a,b), there are integers x and y such that d = za + yb. Thus d can be

written as an integral linear combination of @ and b, and so e < d, by definition of e.

e d < e : there are integers s and ¢ such that e = sa +tb. Since d | a and d | b, it follows that

@ d|e Thusd<e.
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8. [10 marks] Suppose a > 2 and b > 2 are relatively prime natural numbers. Prove that

N,

D)

Proof:

a®® +5#(@ =1 (mod ab).

by Fuler’s Theorem /
a®® =1 (mod b) & a®® — 1= b, 2

for some natural number j. Similarly,

b*@ =1 (mod a) = b*® — 1 =ka, @

for some natural number k. Then

", -

S ,
Since a

)

ibka= (aaxb) _ 1) (bqs(a) _ 1) _ a?Opp@) _ o) _pp@) 4 q [ 3

b divides the left side of this equation, and a b divides the term a?®p%(@) on the right side of

this equation, it follows that a b divides the rest of the right side of the above equation. That is,

ab|1—a®® —p#@ o 020 4 p?() =1 (mod ab).
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9.(a) [6 marks] Let S and T be sets. Define the following:
1. S is countable.
Solution: the set S is countable if it is finite or has the same cardinality as N.

f \ ™, ==
2. 18] = IT]. & =

Solution: two sets S and T have the same cardinality, or satisfy |S| = |T1, if there is a function

/1 f: 8 — T such that f is (ﬁe—tOQOHe and C():nto. (Or as the book puts it: f is a one-to-one
(% /)

correspondence. )

9.(b) [4 marks] Prove that the set S = {nl/k | n, k € N} is countable.

Solution 1: let S, = {nl/k | neN} = {11/]“, 21/]“, 3k o ontE }. Then S is countable and é?

o0 %
S=8USU--USU-- = | ] 8 @9
‘ o ,,

@}tha’c is, § is the union of a countable number of countable sets, so it is countable. (By a Theorem in

the book.) T S

Solution 2: list the elements in S as

/1 91/t g1 411 g1
11/2 91/2 gl/2 41/2 51/2
11/3 9l/3 31/3 41/3 51/3
11/4 9l/4 g1/4 41/4 gl/4
11/5 91/5 31/5 41/5 5l/5

and then count them in the usual zig-zag manner, starting in the top left corner, skipping any
repetitions. This is really the same as Solution 1, since the k-th row in the above array consists of

all the elements in Sy,.



10.(a) [4 marks] Find a function f : [~1,0) — [1,00) that is one-to-one and onto, and show your function

1$ one-to-one and onto.

Solution: one obvious choice is

1 \
fla)=~~. (D
We have
1. —1§x<0:>12—x>0andf(m)=—%21. @ﬁ/

2. f is one-to-one: ) )
f(xl):f(x2)2>—;c—1=—x—2:>m2:x1 U(l?/[ 6//,47

3. fis onto: let y > 1. Then —1/y € [~1,0) and /7/0/%//7&«7“
f (—1> = 1/(~1/y) =v.

Y

10.(b) [6 marks] Show that |(0,1)| = |(0,1) U (4, 5)| by constructing an explicit one-to-one and onto
function g : (0,1) — (0,1) U (4,5), and verifying that g is one-to-one and onto. Use the next page

if you need more space.

Solution: here is one possibility. Let g : (0,1) — (0,1) U (4, 5) be defined in two pieces:

@MLDeﬁne g:(1/2,1) — (4,5) by g(z) = 2z + 3, which is clearly one-to-one and onto.

o e i

2. Define g: (0,1/2] — (0,1) in two steps:
Step 1: map x € (0,1/2] to 2z € (0,1], by h(z) = 2z, which is clearly one-to-one and onto.

Step 2: now map (0,1] — (0, 1), using some techniques from the book, as in Theorem 10.2.6:
Define k£ : (0,1} — (0,1) by

1 1
if z=—, neN
n+1 n
k(z) =
x ,  otherwise

Then k : {1/1,1/2,1/3,...,1/n,...} — {1/2,1/3,1/4,...,1/(n+1),...} and fixes all
numbers z which are not reciprocals of a natural number. Thus the range of k is (0,1). And
k is also one-to-one: f(1/n) = f(1/m)=1/(n+1)=1/(m+1)=>n+1=m+1=n=m;
for non-reciprocal z, f is just the identity.

@ Then g = k oh : (0,1/2] — (0,1), and it is one-to-one and onto, since the composition of

one-to-one and onto maps is also one-to-one and onto.
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This page is for rough work or for extra space to finish a previous problem. It will not be marked unless

you have indicated in a previous question to look at this page.
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