MAT246H1S LEC0101 - Concepts In Abstract Mathematics

Solutions to Term Test 2 - March 13, 2019

Time allotted: 105 minutes.

Aids permitted: None.

Solutions and guide to part marks.

General Comments:

- · O no hat-marks please!
- · 2 students must explain their work; destateept deduct musis

 If no no explanation is given
 - (3) don't waste a lot of home trying to figure out what strudents are doing, they are supposed to make it clear.
 - (4) only look at p 12,13 or 14 it student directs you there. Enter no marks on p 12, 13, or 14. Any part marks for work on p 12, 13 or 14. Any part marks for total for page the question is orginally on.
 - (5) watch out for alternate cornect solutions.

Thanki &B

1.(a) [3 marks] Define the Euler ϕ function.

Solution: let m be a natural number greater than 1. $\phi(m)$ is the number of elements in the set $\{1, 2, 3, \ldots, m-1\}$ which are relatively prime to m.

1.(b) [4 marks] Calculate $\phi(675)$.

Solution: the prime factorization of 675 is $675 = 3^3 \cdot 5^2$, so

$$\phi(675) = \phi(3^3)\phi(5^2) = (3^3 - 3^2) \cdot (5^2 - 5) = 18 \cdot 20 = 360.$$

1.(c) [3 marks] Suppose m is a natural number with m > 1. Prove that $\phi(m) = m - 1$ if and only if m is a prime.

Proof: suppose m is prime. It was proved in the book that $\phi(m) = m - 1$.

- OR: suppose m is prime and k is a number in the set $\{1, 2, ..., m-1\}$. If gcd(k, m) = d, then in particular d divides m, which means d = 1 or d = m. But d also divides k and k < m. So d = 1 for each k and consequently $\phi(m) = m 1$. (2) If they prove it
- Conversely, suppose every number k in the set $\{1, 2, ..., m-1\}$ is relatively prime to m. In particular, if k > 1 then k cannot divide m; otherwise gcd(m, k) = k. Thus m has no divisors other than 1 and itself. That is, m is prime.

So: students can get 4/3 on this

part it they prove

m prime => \$\psi(m) = m-1\$

2.(a) [2 marks] State Euler's Theorem.

Solution: if m is a natural number greater than 1 and a is a natural number that is relatively prime to m, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

2.(b) [3 marks] Calculate the multiplicative inverse of 3¹⁹ modulo 16. Give your answer as a natural number less than 16.

Solution: since 3 and 16 are relatively prime, and $\phi(16) = \phi(2^4) = 2^4 - 2^3 = 8$, Euler's Theorem implies

$$3^8 \equiv 1 \pmod{16}.$$

Thus $(3^8)^3 = 3^{24} \equiv 1 \pmod{16}$, which means a multiplicative inverse of 3^{19} is 3^5 . But

$$3^5 = 3^4 \cdot 3 \equiv 1 \cdot 3 \pmod{16},$$

so the answer is 3. $\sqrt{}$

2.(c) [5 marks] Suppose that a and m are relatively prime natural numbers, m > 1, and k is the smallest natural number such that $a^k \equiv 1 \pmod{m}$. Prove that k divides $\phi(m)$.

Proof: by Euler's Theorem, $a^{\phi(m)} \equiv 1 \pmod{m}$. Thus, by definition of k, we have $k \leq \phi(m)$. Suppose k does not divide $\phi(m)$. Then by the division algorithm there are natural numbers n and r such that r < k and

$$\phi(m) = n \cdot k + r.$$

Consequently

$$a^{\phi(m)} = a^{n \cdot k + r} = (a^k)^n \cdot a^r$$

and

$$(a^k)^n \cdot a^r \equiv a^{\phi(m)} \pmod{m}$$

 $\Rightarrow (1)^n \cdot a^r \equiv 1 \pmod{m}$
 $\Rightarrow a^r \equiv 1 \pmod{m}$

Wing división algorishm and

Since r < k, this contradicts the definition of k as the smallest natural number such that

$$a^k \equiv 1 \pmod{m}$$
.

Hence k must divide $\phi(m)$.

ge strag

3.(a) [6 marks] Use the Rational Roots Theorem to find all the rational roots of the polynomial

$$f(x) = 2x^3 - 5x^2 + 5x - 3.$$

Solution: if

$$r = \frac{m}{n}$$

is a rational root of f(x), in lowest terms, then by the Rational Roots Theorem, m must divide 3 and n must divide 2. Thus $m = \pm 1$ or ± 3 ; and $n = \pm 1$ or ± 2 . This gives eight possible rational roots r of f(x). However if r < 0 then f(r) < 0. So we need only check the four positive possibilities for r to see if f(r) = 0:

r	f(r)	is r a root?
1		
T	$2 - 5 + 5 - 3 = -1 \neq 0$	no
$\frac{1}{2}$	$\frac{2}{8} - \frac{5}{4} + \frac{5}{2} - 3 = -\frac{3}{2} \neq 0$	no
3	$54 - 45 + 15 - 3 = 21 \neq 0$	no
$\frac{3}{2}$	$\frac{54}{8} - \frac{45}{4} + \frac{15}{2} - 3 = 0$	yes

(4) for checking.

So the only rational root of f(x) is $r = \frac{3}{2}$.

3.(b) [4 marks] Find the non-rational solutions to the equation f(x) = 0. (They will be complex numbers.)

Solution: long division by the factor 2x - 3 gives

$$f(x) = (2x - 3)(x^2 - x + 1).$$

Using the quadratic formula, the non-rational roots of f(x) are

$$x = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i. \quad \text{ (2)} \quad \text{ (2)}$$

Alternate Division: if the linear factor is taken to be x - 3/2, then

$$f(x) = \left(x - \frac{3}{2}\right)(2x^2 - 2x + 2).$$

Of course the complex roots, are still the same.

- 4. [10 marks] Prove that the following numbers are irrational.
 - (a) [5 marks] $\sqrt[3]{5} + \sqrt{3}$

Proof: suppose $\sqrt[3]{5} + \sqrt{3} = r$, where $r = \frac{m}{n}$ is a rational number. Then

$$\sqrt[3]{5} + \sqrt{3} = r \quad \Rightarrow \quad \sqrt[3]{5} = r - \sqrt{3}$$

$$\Rightarrow \quad 5 = (r - \sqrt{3})^3 = r^3 - 3r^2\sqrt{3} + 9r - 3\sqrt{3}$$

$$\Rightarrow \quad \sqrt{3} = \frac{r^3 + 9r - 5}{3 + 3r^2},$$

which would imply that $\sqrt{3}$ is rational. This contradicts the result proved in the book that \sqrt{p} is irrational for every prime p. So $\sqrt[3]{5} + \sqrt{3}$ must be irrational.

(b) [5 marks] \sqrt{n} , if $n \equiv \pm 2 \pmod{5}$.

Proof: by contraposition. Suppose \sqrt{n} is rational. Then by a Theorem in the book, $\sqrt{n} = k$, for some natural number k. Thus $n = k^2$. Consider the five possibilities:

- 1. if $k \equiv 0 \pmod{5}$, then $n = 0^2 \equiv 0 \pmod{5}$
- 2. if $k \equiv 1 \pmod{5}$, then $n = 1^2 \equiv 1 \pmod{5}$
- 3. if $k \equiv 2 \pmod{5}$, then $n = 2^2 \equiv 4 \pmod{5}$
- 4. if $k \equiv 3 \pmod{5}$, then $n = 3^2 \equiv 4 \pmod{5}$
- 5. if $k \equiv 4 \pmod{5}$, then $n = 4^2 \equiv 1 \pmod{5}$

That is, if \sqrt{n} is rational, then $n \equiv 0, 1$ or $4 \pmod{5}$.

Equivalently: if $n \equiv 2$ or $3 \pmod{5}$, then \sqrt{n} must be irrational.

5.(a) [3 marks] State De Moivre's Theorem.

Solution: for every natural number n and any real numbers r, θ ,

$$(r(\cos\theta + i\sin\theta))^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

5.(b) [7 marks] Find all the roots of the polynomial $z^7 - z$.

Solution 1: z = 0 or $z^6 = 1$. Let $z = \cos \theta + i \sin \theta$. Then $z^6 = 1$ implies, by De Moivre's Theorem,

$$\cos(6\theta) + i \sin(6\theta) = 1$$

$$\Rightarrow 6\theta = 0 + 2\pi k$$

$$\Rightarrow \theta = \frac{\pi k}{3}$$

The six distinct non-zero solutions for z are given by

$$\theta = 0, \ \pi, \ \pm \frac{\pi}{3}, \ \pm \frac{2\pi}{3}.$$

The seven distinct solutions to $z^7 = z$ are

$$z = 0, z = \pm 1, \text{ and } z = \pm \frac{1}{2} \pm \frac{\sqrt{3}}{2}i.$$

They are all plotted in the figure above left.

Ky should 13 13 12 22 SIN 3 1 22

Solution 2: just factor.

$$z^7 - z = z(z^6 - z) = z(z^3 - 1)(z^3 + 1) = z(z - 1)(z^2 + z + 1)(z + 1)(z^2 - z + 1).$$

Thus

$$z^{7} = z \implies z = 0, \ z = \pm 1, \ z^{2} + z + 1 = 0, \text{ or } z^{2} - z + 1 = 0$$

$$\Rightarrow z = 0, \ z = \pm 1, \ z = \frac{-1 \pm \sqrt{-3}}{2}, \ z = \frac{1 \pm \sqrt{-3}}{2}$$

$$\Rightarrow z = 0, \ z = \pm 1, \ z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i, \ z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i,$$

as before.

6. [10 marks] An exercise in the textbook says that if p and q are distinct primes, then the system of congruences

$$x \equiv a \pmod{p}, \ x \equiv b \pmod{q}$$

has a unique solution modulo pq. Illustrate this result by solving the following system modulo 187:

$$x \equiv 2 \pmod{11}, \ x \equiv 5 \pmod{17}.$$

Solution:

$$x \equiv 2 \pmod{11} \Rightarrow x = 2 + 11 j$$
, for some integer j .

Then

$$x \equiv 5 \pmod{17} \quad \Rightarrow \quad 2 + 11 \ j \equiv 5 \pmod{17}$$

$$\Rightarrow \quad 11 \ j \equiv 3 \pmod{17}$$

$$\Rightarrow \quad (-3) \cdot 11 \ j \equiv -9 \pmod{17}$$

$$(\text{since } -33 \equiv 1 \pmod{17}) \quad \Rightarrow \quad j \equiv 8 \pmod{17}$$

Thus j = 8 + 17 k, for some integer k, and so

$$x = 2 + 11(8 + 17k) = 90 + 187k,$$

for some integer k. Thus

$$x = 90$$

is the unique solution, modulo 187, to the given system of congruences.

Note: you could also find the multiplicative inverse of 11, modulo 17, as follows:

$$17 = 1 \cdot 11 + 6$$

$$11 = 1 \cdot 6 + 5$$

$$6 = 1 \cdot 5 + 1$$

implying

$$1 = 6 - 5 = 6 - (11 - 6) = 2 \cdot 6 - 11 = 2(17 - 11) - 11 = 2 \cdot 17 - 3 \cdot 11$$

from which you can see that -3 (or 14) is the multiplicative inverse of 11, modulo 17.

7.(a) [5 marks] Assume that m is a natural number with $m > 1$. Prove that a has a multiplicative inverse
	modulo m if and only if a and m are relatively prime.
0	Proof: there is an integer x such that $ax \equiv 1 \pmod{m}$
0	if and only if there is an integer y such that $ax - 1 = ym$
0	if and only if $ax - ym = 1$
0	it and only if $gcd(a, m) = 1$,
0	since if d divides both a and m then d divides $a x - y m = 1$, which means $d \mid 1$.
7.(b	b) [5 marks] Assume that a and b are natural numbers greater than 1. Prove that $gcd(a, b)$ is the smallest natural number n such that n is an integral linear combination of a and b .
	Proof: let $gcd(a, b) = d$. Let e be the smallest natural number n such that n is an integral linear combination of a and b . We claim $e = d$. To show this we shall show $e \le d$ and $d \le e$.
3	• $e \le d$: since $d = \gcd(a, b)$, there are integers x and y such that $d = x a + y b$. Thus d can be written as an integral linear combination of a and b , and so $e \le d$, by definition of e .
2	• $d \le e$: there are integers s and t such that $e = sa + tb$. Since $d \mid a$ and $d \mid b$, it follows that $d \mid e$. Thus $d \le e$.
	18 3 for one negneality. (2) For the other.
	NB: they may be afternate subutions

8. [10 marks] Suppose $a \ge 2$ and $b \ge 2$ are relatively prime natural numbers. Prove that

$$a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}.$$

Proof: by Euler's Theorem

$$a^{\phi(b)} \equiv 1 \pmod{b} \Leftrightarrow a^{\phi(b)} - 1 = j b,$$

for some natural number j. Similarly,

$$b^{\phi(a)} \equiv 1 \pmod{a} \Leftrightarrow b^{\phi(a)} - 1 = k a,$$

for some natural number k. Then

$$j b k a = \left(a^{\phi(b)} - 1\right) \left(b^{\phi(a)} - 1\right) = a^{\phi(b)} b^{\phi(a)} - a^{\phi(b)} - b^{\phi(a)} + 1.$$

Since $a\,b$ divides the left side of this equation, and $a\,b$ divides the term $a^{\phi(b)}b^{\phi(a)}$ on the right side of this equation, it follows that $a\,b$ divides the rest of the right side of the above equation. That is,

$$a b \mid 1 - a^{\phi(b)} - b^{\phi(a)} \Leftrightarrow a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}.$$

- 9.(a) [6 marks] Let S and T be sets. Define the following:
 - 1. S is countable.

Solution: the set S is countable if it is finite or has the same cardinality as \mathbb{N} .

2. |S| = |T|.

Solution: two sets S and T have the same cardinality, or satisfy |S| = |T|, if there is a function $f: \mathcal{S} \longrightarrow \mathcal{T}$ such that f is one-to-one and onto. (Or as the book puts it: f is a one-to-one correspondence.) correspondence.)

9.(b) [4 marks] Prove that the set $S = \{n^{1/k} \mid n, k \in \mathbb{N}\}$ is countable.

Solution 1: let
$$S_k = \{n^{1/k} \mid n \in \mathbb{N}\} = \{1^{1/k}, 2^{1/k}, 3^{1/k}, \dots, n^{1/k}, \dots\}$$
. Then S_k is countable and
$$S = S_1 \cup S_2 \cup \dots \cup S_k \cup \dots = \bigcup_{k=1}^{\infty} S_k;$$

that is, S is the union of a countable number of countable sets, so it is countable. (By a Theorem in the book.)

Solution 2: list the elements in S as

and then count them in the usual zig-zag manner, starting in the top left corner, skipping any repetitions. This is really the same as Solution 1, since the k-th row in the above array consists of all the elements in \mathcal{S}_k .

10.(a) [4 marks] Find a function $f:[-1,0) \longrightarrow [1,\infty)$ that is one-to-one and onto, and show your function is one-to-one and onto.

Solution: one obvious choice is

$$f(x) = -\frac{1}{x}.$$

We have

1.
$$-1 \le x < 0 \Rightarrow 1 \ge -x > 0$$
 and $f(x) = -\frac{1}{x} \ge 1$.

2. f is one-to-one:

$$f(x_1) = f(x_2) \Rightarrow -\frac{1}{x_1} = -\frac{1}{x_2} \Rightarrow x_2 = x_1$$

3. f is onto: let $y \ge 1$. Then $-1/y \in [-1,0)$ and

$$f\left(-\frac{1}{y}\right) = -1/(-1/y) = y.$$

10.(b) [6 marks] Show that $|(0,1)| = |(0,1) \cup (4,5)|$ by constructing an explicit one-to-one and onto function $g:(0,1) \longrightarrow (0,1) \cup (4,5)$, and verifying that g is one-to-one and onto. Use the next page if you need more space.

Solution: here is one possibility. Let $g:(0,1)\longrightarrow (0,1)\cup (4,5)$ be defined in two pieces:

- 1. Define $g:(1/2,1) \longrightarrow (4,5)$ by g(x)=2x+3, which is clearly one-to-one and onto.
 - 2. Define $g:(0,1/2] \longrightarrow (0,1)$ in two steps:

Step 1: map $x \in (0, 1/2]$ to $2x \in (0, 1]$, by h(x) = 2x, which is clearly one-to-one and onto.

Step 2: now map $(0,1] \longrightarrow (0,1)$, using some techniques from the book, as in Theorem 10.2.6:

Define $k:(0,1] \longrightarrow (0,1)$ by

$$k(x) = \begin{cases} \frac{1}{n+1} & \text{if} \quad x = \frac{1}{n}, \ n \in \mathbb{N} \\ x, & \text{otherwise} \end{cases}$$

Then $k: \{1/1, 1/2, 1/3, \dots, 1/n, \dots\} \longrightarrow \{1/2, 1/3, 1/4, \dots, 1/(n+1), \dots\}$ and fixes all numbers x which are not reciprocals of a natural number. Thus the range of k is (0,1). And k is also one-to-one: $f(1/n) = f(1/m) \Rightarrow 1/(n+1) = 1/(m+1) \Rightarrow n+1 = m+1 \Rightarrow n = m$; for non-reciprocal x, f is just the identity.

Then $g = k \circ h : (0, 1/2] \longrightarrow (0, 1)$, and it is one-to-one and onto, since the composition of one-to-one and onto maps is also one-to-one and onto.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.