MAT187H1F - Calculus II - Spring 2016
 Solutions to Term Test 2 - June 15, 2016

Time allotted: 110 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

1. The results on this test were mediocre. Questions $1,3,4,5$ and 7 had passing averages, and Question 2 nearly had a passing average. So far so good. But Question 6 had 8 had very low averages - even though Question 6 was based almost verbatim on a Problem Set Question and a Suggested Exercise.
2. Question 8 was just the cosine version of examples done in class: Example 6 from Section 10.1 and Example 13 from Section 10.4. It shouldn't have been as mysterious as it seems to have appeared.
3. Be that as it may, I will count this test out of (top mark) 72 , which increases the average to 58.5%. This produces a term mark of $34 / 50$, approximately, or 68%.

Breakdown of Results: 54 students wrote this test. The marks ranged from 18.8% to 90%, and the average was 52.7%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	1.8%
A	5.5%	$80-89 \%$	3.7%
B	11.1%	$70-79 \%$	11.1%
C	24.1%	$60-69 \%$	24.1%
D	20.4%	$50-59 \%$	20.4%
F	38.9%	$40-49 \%$	11.1%
		$30-39 \%$	16.7%
		$20-29 \%$	7.4%
		$10-19 \%$	3.7%
		$0-9 \%$	0.0%

PART I : No explanation is necessary. Answer all of the following short-answer questions by putting your answer in the appropriate blank or by circling your choice(s).

1. [10 marks; 2 marks for each part. Avg: 6.7/10]
(a) $\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k}=$ \qquad

$$
\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k}=\frac{2}{3} \sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k-1}=\frac{2}{3}\left(\frac{1}{1-2 / 3}\right)=2
$$

(b) $\sum_{k=2}^{\infty} \frac{1}{k^{2}-1}=$
$\frac{3}{4}$

$$
\sum_{k=2}^{\infty} \frac{1}{k^{2}-1}=\sum_{k=2}^{\infty} \frac{1}{2}\left(\frac{1}{k-1}-\frac{1}{k+1}\right)=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\cdots\right)=\frac{1}{2}\left(\frac{3}{2}\right)=\frac{3}{4}
$$

(c) The infinite series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}$
(i) converges absolutely (ii) converges conditionally (iii) diverges
(d) The infinite series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k+1}}$
(i) converges absolutely (ii) converges conditionally (iii) diverges
(e) The infinite series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\tan ^{-1} x}$
(i) converges absolutely (ii) converges conditionally (iii) diverges

Note: this was a misprint; it should have been $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\tan ^{-1} k}$. But either way it diverges, and the 'uncorrected' version is actually easier.
2. [10 marks; 2 marks for each part. Avg: 4.0/10] Consider the power series $f(x)=\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{x}{3}\right)^{k}$.
(a) What is the radius of convergence of $f(x)$?
$R=$ \qquad

$$
a_{k}=\frac{1}{3^{k} k} ; \lim _{k \rightarrow \infty} \frac{a_{k}}{a_{k+1}}=\lim _{k \rightarrow \infty} \frac{3^{k+1}(k+1)}{3^{k} k}=3 \lim _{k \rightarrow \infty} \frac{k+1}{k}=3 .
$$

(b) What is the interval of convergence of $f(x)$?

Answer: \qquad

$$
f(3)=\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{3}{3}\right)^{k}=\sum_{k=1}^{\infty} \frac{1}{k} \text { diverges; } f(-3)=\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{-3}{3}\right)^{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \text { converges. }
$$

(c) What is the power series for $f^{\prime}(x)$, in sigma notation?

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} \frac{1}{3}\left(\frac{x}{3}\right)^{k-1}
$$

(d) Find a formula for $f^{\prime}(x)$ not in terms of a power series.

$$
f^{\prime}(x)=\frac{1}{3-x}
$$

$$
\sum_{k=1}^{\infty} \frac{1}{3}\left(\frac{x}{3}\right)^{k-1}=\frac{1}{3}\left(\frac{1}{1-x / 3}\right)=\frac{1}{3-x}
$$

(e) What is the exact value of $f(2)$?

$$
f(2)=
$$

\qquad

$$
\begin{gathered}
f(x)=\int \frac{1}{3-x} d x=-\ln (3-x)+C ; f(0)=0 \Rightarrow C=\ln 3 ; \\
f(2)=-\ln 1+\ln 3=\ln 3
\end{gathered}
$$

PART II : Present complete solutions to the following questions in the space provided.
3. [10 marks; avg: 6.6/10] Consider the curve with parametric equations $x=t^{2}-1, y=t^{3}-12 t$.
(a) [5 marks] Find the first derivative $\frac{d y}{d x}$ and the coordinates of all the critical ${ }^{1}$ points on the curve.

Solution:

$$
y^{\prime}=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t^{2}-12}{2 t}=\frac{3\left(t^{2}-4\right)}{2 t}=\frac{3 t}{2}-\frac{6}{t}, \text { if } t \neq 0 .
$$

So $\frac{d y}{d x}=0$ for $t= \pm 2$ and $\frac{d y}{d x}$ is undefined for $t=0$. Thus the three critical points are

$$
(x, y)=(-1,0),(3,-16),(3,16) .
$$

(b) [5 marks] Find the second derivative $\frac{d^{2} y}{d x^{2}}$ and the values of t for which the curve is concave up.

Solution: for $t \neq 0$,

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d x}{d t}}=\frac{\left(\frac{3}{2}+\frac{6}{t^{2}}\right)}{2 t}=\frac{3\left(t^{2}+4\right)}{4 t^{3}}
$$

Now find for which values of t the second derivative is positive:

$$
\frac{d^{2} y}{d x^{2}}>0 \Leftrightarrow t>0 .
$$

[^0]4. [10 marks; avg: 5.8/10] Let $f(x)=e^{-x} \ln \left(1+x^{2}\right)$.
(a) [7 marks] Find the first four non-zero terms in the Maclaurin series of $f(x)$.

Solution: use

$$
\begin{gathered}
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!}+\cdots \\
\ln \left(1+x^{2}\right)=x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\cdots
\end{gathered}
$$

and multiply them together, collecting like terms:

$$
\begin{aligned}
e^{-x} \ln \left(1+x^{2}\right) & =\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!}+\cdots\right)\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\cdots\right) \\
& =x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}+\cdots-x^{3}+\frac{x^{5}}{2}+\cdots+\frac{x^{4}}{2}-\frac{x^{6}}{4}+\cdots-\frac{x^{5}}{6}+\cdots \frac{x^{6}}{24}+\cdots \\
& =x^{2}-x^{3}+\frac{x^{5}}{3}+\frac{x^{6}}{8}+\cdots
\end{aligned}
$$

(b) [3 marks] What is the value of $f^{(5)}(0)$?

Solution:

$$
\frac{1}{3}=\frac{f^{(5)}(0)}{5!} \Leftrightarrow f^{(5)}(0)=40 .
$$

5. [10 marks; avg: 6.3/10] Approximate the value of

$$
\int_{0}^{1 / 2} \frac{x}{\sqrt{1+x^{6}}} d x
$$

correct to within 10^{-4}. Make sure to explain why your approximation is correct to within 10^{-4}.

Solution: use binomial series.

$$
\begin{aligned}
\frac{x}{\sqrt{1+x^{6}}} & =x\left(1+x^{6}\right)^{-1 / 2} \\
& =x\left(1+(-1 / 2) x^{6}+\frac{(-1 / 2)(-3 / 2)}{2!}\left(x^{6}\right)^{2}+\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{3!}\left(x^{6}\right)^{3}+\cdots\right) \\
& =x\left(1-\frac{x^{6}}{2}+\frac{3 x^{12}}{8}-\frac{5 x^{18}}{16}+\cdots\right) \\
& =x-\frac{x^{7}}{2}+\frac{3 x^{13}}{8}-\frac{5 x^{19}}{16}+\cdots \\
\Rightarrow \int_{0}^{1 / 2} \frac{x}{\sqrt{1+x^{6}}} d x & =\int_{0}^{1 / 2}\left(x-\frac{x^{7}}{2}+\frac{3 x^{13}}{8}-\frac{5 x^{19}}{16}+\cdots\right) d x \\
& =\left[\frac{x^{2}}{2}-\frac{x^{8}}{16}+\frac{3 x^{14}}{112}-\frac{x^{20}}{64}+\cdots\right]_{0}^{1 / 2} \\
& =\frac{3}{8}-\frac{1}{4096}+\frac{3}{1835008}-\frac{1}{67108864}+\cdots \\
& =\underbrace{0.125-0.00024414} \cdots+0.000001634 \cdots-0.000000014 \cdots+\cdots \\
& =0.124755859, \text { correct to within } 0.000001634<10^{-4},
\end{aligned}
$$

by the alternating series test remainder formula.
6. [10 marks; avg: 3.7/10] Suppose a super ball is dropped from a height of 2 m and repeatedly bounces off the floor. Each time it hits the floor it rebounds to 75% of its previous height. Let the initial height of the ball be $h_{0}=2$; let h_{n} be the height of the ball after the n-th bounce, for $n \geq 1$. Let S_{n} be the total distance the ball has travelled at the time it hits the floor for the n-th time.
(a) [4 marks] Write down formulas for h_{n} and S_{n}.

Solution: $h_{n}=2\left(\frac{3}{4}\right)^{n}$;

$$
\begin{aligned}
S_{n} & =h_{0}+2 h_{1}+2 h_{2}+\cdots 2 h_{n-1} \\
& =\sum_{k=0}^{n-1} 2 h_{k}-h_{0} \\
& =4 \sum_{k=0}^{n-1}\left(\frac{3}{4}\right)^{k}-2 \\
& =4\left(\frac{1-(3 / 4)^{n}}{1-3 / 4}\right)-2 \\
& =14-16\left(\frac{3}{4}\right)^{n}
\end{aligned}
$$

(b) [3 marks] What is the total distance travelled by the ball when it finally stops bouncing?

Solution: depending on how far you simplified your answer for S_{n} in part (a), this could be a short calculation,

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(14-16\left(\frac{3}{4}\right)^{n}\right)=14
$$

or a longer calculation

$$
\lim _{n \rightarrow \infty} S_{n}=4 \sum_{k=0}^{\infty}\left(\frac{3}{4}\right)^{k}-2=4\left(\frac{1}{1-3 / 4}\right)-2=16-2=14 .
$$

(c) [3 marks] What is the total time taken before the ball comes to rest? Assume $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

Solution: use $h_{n}=\frac{1}{2} g t_{n}^{2} \Rightarrow t_{n}=\sqrt{\frac{2 h_{n}}{g}}$. Then the total time taken is

$$
2 \sum_{k=0}^{\infty} t_{k}-t_{0}=2 \sum_{k=0}^{\infty} \sqrt{\frac{4}{g}}\left(\sqrt{\frac{3}{4}}\right)^{k}-\sqrt{\frac{4}{g}}=\sqrt{\frac{4}{g}}\left(\frac{2}{1-\sqrt{3 / 4}}-1\right)=\sqrt{\frac{4}{g}}\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right) \approx 8.9 \mathrm{sec}
$$

7. [10 marks; avg: 6.4/10] For the given convergent infinite series determine at least how many terms of the series must be added up to approximate the sum of the series correctly to within 10^{-4}.
(a) [4 marks] $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{4}}$.

Solution: use the alternating series remainder term.

$$
\left|R_{n}\right|<a_{n+1}=\frac{1}{(n+1)^{4}}<10^{-4} \Rightarrow(n+1)^{4}>10^{4} \Rightarrow n+1>10 \Rightarrow n>9
$$

So you have to add at least 10 terms. (Actually, 8 will do, but this is not easy to show without a computer algebra system.)
(b) [6 marks] $\sum_{k=1}^{\infty} \frac{1}{k^{4}}$.

Solution: use the integral test remainder term.

$$
R_{n}<\int_{n}^{\infty} \frac{1}{x^{4}} d x=\lim _{b \rightarrow \infty}\left[-\frac{1}{3 x^{3}}\right]_{n}^{b}=\frac{1}{3 n^{3}}<10^{-4} \Rightarrow \frac{10000}{3}<n^{3} \Rightarrow n>10\left(\frac{10}{3}\right)^{1 / 3} \approx 14.9380
$$

So you have to add at least 15 terms.
8. [10 marks; avg: 2.7/10] Consider the problem:

For which values of x does the polynomial $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ approximate $\cos x$ correctly to within 10^{-6} ?

Solve this problem in two ways: one using Taylor's remainder formula, one without using Taylor's remainder formula.
Solution: no matter which way you do this, you have to realize that $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ is a Maclaurin polynomial approximation to $f(x)=\cos x$.

With Taylor's remainder formula: observe that since $f^{(5)}(0)=-\sin 0=0$,

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}=P_{4}(x)=P_{5}(x) .
$$

Then

$$
R_{5}(x)=\frac{f^{(6)}(z)}{6!} x^{6},
$$

for some number z between 0 and x. Since $f^{(6)}(z)=-\cos z$, we have

$$
\left|R_{5}(x)\right|=\left|\frac{-\cos (z)}{6!} x^{6}\right|=|\cos z| \frac{|x|^{6}}{6!} \leq 1 \cdot \frac{|x|^{6}}{6!}=\frac{|x|^{6}}{6!} .
$$

Take x such that

$$
|x|^{6}<6!\cdot 10^{-6} \Leftrightarrow|x|<\frac{720^{1 / 6}}{10} \approx 0.299379516 \ldots
$$

Without Taylor's remainder formula: use the Maclaruin series for $\cos x$:

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=P_{4}(x)-\frac{x^{6}}{6!}+\cdots
$$

By the alternating series test remainder form, if you approximate $\cos x$ by $P_{4}(x)$, then the error term R_{4} satisfies

$$
\left|R_{4}\right|<\frac{x^{6}}{6!}
$$

Now set

$$
\frac{x^{6}}{6!}<10^{-6} \Leftrightarrow|x|<\frac{720^{1 / 6}}{10} \approx 0.299379516 \ldots
$$

as before. (Aside: is

$$
a_{k}=\frac{x^{2 k}}{(2 k)!}
$$

a decreasing sequence? Certainly if $|x|<1$, which is good enough for this problem.)

This page is for rough work; it will not be marked unless you have indicated to mark it.

This page is for rough work; it will not be marked unless you have indicated to mark it.

This page is for rough work; it will not be marked unless you have indicated to mark it.

[^0]: ${ }^{1}$ Recall: a critical point on a curve is a point where the derivative is zero or undefined.

