University of Toronto
MAT187H1F Quiz 4
Thursday, June 20, 2013
Solutions, with guide to part marks. No half marks, please.
Duration: 30 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

1. [10 marks] Find the area of the region inside the four leaved rose with polar equation $r=2 \cos (2 \theta)$ but outside the circle with polar equation $r=1$.

Solution:

Solve $1=2 \cos 2 \theta$ for intersection points:

$$
\begin{aligned}
2 \cos (2 \theta)=1 & \Rightarrow \cos (2 \theta)=\frac{1}{2} \\
& \Rightarrow 2 \theta= \pm \frac{\pi}{3}, \pm \frac{7 \pi}{3} \\
& \Rightarrow \theta= \pm \frac{\pi}{6}, \pm \frac{7 \pi}{6}
\end{aligned}
$$

Note: by symmetry not all intersection points are needed. But should one want them, one needs to also solve

$$
2 \cos (2 \theta)=-1 \Leftrightarrow \theta= \pm \frac{\pi}{3}, \pm \frac{4 \pi}{3}
$$

By symmetry,

$$
\begin{aligned}
A & =4\left(\frac{1}{2} \int_{-\pi / 6}^{\pi / 6}\left(r^{2}-1\right) d \theta\right) \\
& =8\left(\frac{1}{2} \int_{0}^{\pi / 6}\left(r^{2}-1\right) d \theta\right) \\
& =4 \int_{0}^{\pi / 6}\left(4 \cos ^{2} 2 \theta-1\right) d \theta \\
& =4 \int_{0}^{\pi / 6}(2+2 \cos (4 \theta)-1) d \theta \\
& =4 \int_{0}^{\pi / 6}(1+2 \cos (4 \theta)) d \theta \\
& =[4 \theta+2 \sin (4 \theta)]_{0}^{\pi / 6} \\
& =\frac{2 \pi}{3}+\sqrt{3}
\end{aligned}
$$

2. [10 marks] Find the arc length of the curve

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+(\cos t+t \sin t) \mathbf{j}+(\sin t-t \cos t) \mathbf{k}
$$

for $0 \leq t \leq \pi$.

Solution:

$$
\begin{aligned}
\frac{d \mathbf{r}}{d t} & =2 t \mathbf{i}+(-\sin t+\sin t+t \cos t) \mathbf{j}+(\cos t-\cos t+t \sin t) \mathbf{k} \\
& =2 t \mathbf{i}+t \cos t \mathbf{j}+t \sin t \mathbf{k} \\
\Rightarrow\left\|\frac{d \mathbf{r}}{d t}\right\| & =\sqrt{4 t^{2}+t^{2} \cos ^{2} t+t^{2} \sin ^{2} t} \\
& =\sqrt{5} t
\end{aligned}
$$

Thus the length of the curve is

$$
L=\int_{0}^{\pi}\left\|\frac{d \mathbf{r}}{d t}\right\| d t=\int_{0}^{\pi} \sqrt{5} t d t=\left[\frac{\sqrt{5} t^{2}}{2}\right]_{0}^{\pi}=\frac{\sqrt{5} \pi^{2}}{2}
$$

