MAT187H1F - Calculus II - Spring 2017
 Solutions for Term Test 1 - May 31, 2017

Time allotted: 110 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

Comments:

1. Every part of the test was done perfectly at least once. However, there was no single perfect paper. The only question with a failing average was Question 8.
2. The average was 'only' 61.5%. For the purposes of your term mark calculations, I will count this test out of 76 (which was the top mark), effectively making the average on this test 64.7%

Breakdown of Results: 39 students wrote this test, including one student not officially registered in the course. The marks ranged from 26% to 95%, and the average was 61.5%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	5.1%
A	15.4%	$80-89 \%$	10.3%
B	12.8%	$70-79 \%$	12.8%
C	28.2%	$60-69 \%$	28.2%
D	20.5%	$50-59 \%$	20.5%
F	23.1%	$40-49 \%$	15.4%
		$30-39 \%$	5.1%
		$20-29 \%$	2.6%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

PART I : No explanation is necessary. Answer all parts of Questions 1 and 2 by putting your answer in the appropriate blank or by circling your choice(s).

1: [avg: 5.05/10]
1.(a) [2 marks] The exact value of $\int_{0}^{2} \frac{1}{\sqrt{4-x^{2}}} d x$ is: \qquad

$$
\int_{0}^{2} \frac{1}{\sqrt{4-x^{2}}} d x=\left[\sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}=\sin ^{-1}\left(\frac{2}{2}\right)=\frac{\pi}{2}
$$

1.(b) [6 marks] Consider the integral $\int_{0}^{\pi / 3} \sin ^{37} x \cos ^{10} x d x$. Use a substitution to obtain

$$
\int_{0}^{\pi / 3} \sin ^{37} x \cos ^{10} x d x=\int_{a}^{b} f(u) d u
$$

where $f(u)$ is a polynomial function of u, and $a<b$. Then

(No need to expand!)
1.(c) [2 marks] A population of bacteria growing exponentially has a doubling time of 15 minutes. How long will it take for the population of bacteria to become eight times its original size?

Quick way: since $8=2^{3}$, it will take three doubling periods: $3 \times 15=45$ minutes.

Answer: \qquad

2: [avg: $8.31 / 10$]
2.(a) [6 marks] Consider the rational function

$$
\frac{x^{4}-10 x^{2}+x-1}{\left(x^{3}+x^{2}\right)\left(x^{2}-x+1\right)\left(x^{2}+9\right)^{2}} .
$$

To find its partial fraction decompostion we write this function as a sum of the following terms (circle all that apply):
(a) $\frac{A}{x} \quad$ (b) $\frac{D}{x+1}$
(c) $\frac{G+H x}{x^{2}+9}$
(d) $\frac{M x+N}{x^{2}-x+1}$
(e) $\frac{S x+T}{x^{3}+x^{2}}$
(f) $\frac{B}{x^{2}}$
(g) $\frac{E}{(x+1)^{2}}$
(h) $\frac{I+J x}{\left(x^{2}+9\right)^{2}}$
(i) $\frac{O x+P}{\left(x^{2}-x+1\right)^{2}}$
(j) $\frac{U x+V}{\left(x^{3}+x^{2}\right)^{2}}$
(k) $\frac{C}{x^{3}}$
(l) $\frac{F}{(x+1)^{3}}$
(m) $\frac{K+L x}{\left(x^{2}+9\right)^{3}}$
(n) $\frac{Q x+R}{\left(x^{2}-x+1\right)^{3}}$
(o) $\frac{W x+X}{\left(x^{3}+x^{2}\right)^{3}}$
2.(b) [2 marks] Circle all of the following differential equations which are not separable.

$$
\text { (a) } \frac{d y}{d x}=\ln \left(x^{2} y^{2}\right) \quad \text { (b) } \quad \frac{d y}{d x}=e^{x+y} \quad \text { (c) } \quad \frac{d y}{d x}=\sqrt{x^{4}+x^{4} y^{2}}
$$

2.(c) [2 marks] Consider the initial value problem

$$
\mathrm{DE}: \frac{d P}{d t}=\frac{P}{5}-\frac{P^{2}}{75}, \quad \mathrm{IC}: P(0)=5
$$

The value of $\lim _{t \rightarrow \infty} P$ is:

$$
\frac{d P}{d t}=\frac{P}{5}-\frac{P^{2}}{75}=\frac{P}{5}\left(1-\frac{P}{15}\right)
$$

PART II : Present complete solutions to the following questions in the space provided.
3. [10 marks; avg: 9.0/10] Newton's Law of Cooling states that

$$
\frac{d T}{d t}=-k(T-A)
$$

where T is the temperature of an object at time t, in a room with constant ambient temperature A, and k is a positive constant.

Suppose a cup of coffee, initially at temperature 95 C , is placed on a table in a room with constant temperature 22 C . If the temperature of the coffee is 70 C five minutes later, when will the temperature of the coffee be 30 C ? Sketch a graph of T for $t \geq 0$, labeling any horizontal asymptotes.

Solution I: we have $A=22$ and $T_{0}=95$, so if you memorized the solution you know that

$$
T=22+73 e^{-k t} .
$$

To find k, let $t=5$ and $T=70$:

$$
70=22+73 e^{-5 k} \Leftrightarrow \frac{48}{73}=e^{-5 k} \Leftrightarrow e^{5 k}=\frac{73}{48} \Leftrightarrow k=\frac{1}{5} \ln \left(\frac{73}{48}\right) \approx 0.083851686
$$

Now let $T=30$ and solve for t :

$$
\begin{gathered}
30=22+73 e^{-k t} \Leftrightarrow \frac{8}{73}=e^{-k t} \\
\Leftrightarrow e^{k t}=9.125 \Leftrightarrow k t=\ln 9.125 \Leftrightarrow t=\frac{5 \ln 9.125}{\ln (73 / 48)} \approx 26.4
\end{gathered}
$$

So it will take about 26.4 min for the coffee to reach 30 C .
The graph is to the right. $T=22$ is a horizontal asymptote.

Solution II: separate variables. NB: it is not necessary to solve for T.

$$
\int \frac{d T}{T-22}=-\int k d t \Leftrightarrow \ln (T-22)=-k t+C .
$$

To find C, let $t=0, T=95: \quad C=\ln 73$. Now to find k, let $t=5, T=70$:

$$
\ln 48=-5 k+\ln 73 \Leftrightarrow 5 k=\ln 73-\ln 48 \Leftrightarrow k=\frac{1}{5} \ln (73 / 48) .
$$

Finally, let $T=30$ and solve for t :

$$
\ln 8=-\frac{t \ln (73 / 48)}{5}+\ln 73 \Leftrightarrow \frac{t \ln (73 / 48)}{5}=\ln 73-\ln 8 \Leftrightarrow t=\frac{5 \ln (73 / 8)}{\ln (73 / 48)},
$$

as before.
4. [10 marks: avg: $5.97 / 10]$ Find $\int \frac{(4+3 x)}{\sqrt{12+4 x-x^{2}}} d x$.

Solution: complete the square and use a trig substitution.

$$
12+4 x-x^{2}=-\left(x^{2}-4 x\right)+12=-\left(x^{2}-4 x+4-4\right)+12=16-(x-2)^{2} .
$$

Let $x-2=4 \sin \theta$. Then $x=2+4 \sin \theta$ and $d x=4 \cos \theta d \theta$. So

$$
\begin{aligned}
\int \frac{(4+3 x)}{\sqrt{12+4 x-x^{2}}} d x & =\int \frac{(4+6+12 \sin \theta)}{\sqrt{16-16 \sin ^{2} \theta}} 4 \cos \theta d \theta \\
& =\int \frac{(10+12 \sin \theta)}{4 \cos \theta} 4 \cos \theta d \theta \\
& =\int(10+12 \sin \theta) d \theta \\
& =10 \theta-12 \cos \theta+C \\
& =10 \sin ^{-1}\left(\frac{x-2}{4}\right)-12\left(\frac{\sqrt{12+4 x-x^{2}}}{4}\right)+C \\
& =10 \sin ^{-1}\left(\frac{x-2}{4}\right)-3 \sqrt{12+4 x-x^{2}}+C
\end{aligned}
$$

where we used the triangle to the left with

$$
\sin \theta=\frac{x-2}{4}
$$

to get

$$
\cos \theta=\frac{\sqrt{12+4 x-x^{2}}}{4}
$$

5. [avg: 7.74/10] Find the general solution, y in terms of x, for each of the following differential equations:
(a) [5 marks] $\frac{d y}{d x}=e^{-y} \cos ^{2} x$

Solution: separate variables.

$$
\begin{aligned}
\int e^{y} d y= & \int \cos ^{2} x d x=\frac{1}{2} \int(1+\cos (2 x)) d x \\
& \Rightarrow e^{y}=\frac{x}{2}+\frac{\sin (2 x)}{4}+C \\
& \Rightarrow y=\ln \left(\frac{x}{2}+\frac{\sin (2 x)}{4}+C\right)
\end{aligned}
$$

(b) [5 marks] $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{3}}$, for $x>0$.

Solution: use the method of the integrating factor.

$$
\mu=e^{\int \frac{1}{x} d x}=e^{\ln (x)}=x
$$

Then

$$
y=\frac{1}{\mu} \int \mu\left(\frac{1}{x^{3}}\right) d x=\left(\frac{1}{x}\right) \int\left(\frac{1}{x^{2}}\right) d x=\left(\frac{1}{x}\right)\left(-\frac{1}{x}+C\right)=-\frac{1}{x^{2}}+\frac{C}{x}
$$

6. [10 marks; avg: 5.1/10] Find the exact value of $\int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x$.

Solution: use integration by parts and the definition of improper integral. Let

$$
u=\tan ^{-1} x ; d v=\frac{d x}{x^{2}}
$$

Then

$$
d u=\frac{1}{1+x^{2}} d x ; \quad v=-\frac{1}{x}
$$

and

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\tan ^{-1} x}{x^{2}} d x \\
& =\lim _{b \rightarrow \infty}[u v]_{1}^{b}-\lim _{b \rightarrow \infty} \int_{1}^{b} v d u \\
& =\lim _{b \rightarrow \infty}\left[-\frac{\tan ^{-1} x}{x}\right]_{1}^{b}-\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{(-x)\left(1+x^{2}\right)} d x \\
& =-\lim _{b \rightarrow \infty}\left(\frac{\tan ^{-1} b}{b}\right)+\tan ^{-1} 1+\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x\left(1+x^{2}\right)} d x \\
(\operatorname{let} x=\tan \theta) & =0+\frac{\pi}{4}+\int_{\pi / 4}^{\pi / 2} \frac{1}{\tan \theta\left(1+\tan ^{2} \theta\right)} \sec ^{2} \theta d \theta \\
& =\frac{\pi}{4}+\int_{\pi / 4}^{\pi / 2} \cot \theta d \theta \\
& =\frac{\pi}{4}+[\ln (\sin \theta)]_{\pi / 4}^{\pi / 2} \\
& =\frac{\pi}{4}+\ln 1-\ln (1 / \sqrt{2}) \\
& =\frac{\pi}{4}+\frac{\ln 2}{2}
\end{aligned}
$$

OR use partial fractions to evaulate $\int_{1}^{b} \frac{1}{x\left(1+x^{2}\right)} d x$:

$$
\begin{aligned}
\frac{1}{x\left(1+x^{2}\right)}=\frac{A}{x}+\frac{B x+C}{1+x^{2}} & \Rightarrow 1=A+A x^{2}+B x^{2}+C x \\
& \Rightarrow A=1, B=-1, C=0 \\
& \Rightarrow \int_{1}^{b} \frac{1}{x\left(1+x^{2}\right)} d x=\int_{1}^{b}\left(\frac{1}{x}-\frac{x}{1+x^{2}}\right) d x \\
& \Rightarrow \int_{1}^{b} \frac{1}{x\left(1+x^{2}\right)} d x=\left[\ln x-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{1}^{b} \\
& \Rightarrow \int_{1}^{b} \frac{1}{x\left(1+x^{2}\right)} d x=\ln b-\ln \sqrt{1+b^{2}}+\frac{\ln 2}{2} \\
& \Rightarrow \lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x\left(1+x^{2}\right)} d x=\lim _{b \rightarrow \infty} \ln \left(\frac{b}{\sqrt{1+b^{2}}}\right)+\frac{\ln 2}{2}=\ln 1+\frac{\ln 2}{2}=\frac{\ln 2}{2}
\end{aligned}
$$

7. [10 marks; avg: 5.87/10] Recall: if $x(t)$ is the mass of solute dissolved in a solution of volume $V(t)$, at time t, in a large mixing tank, then

$$
\frac{d x(t)}{d t}+\frac{r_{o} x(t)}{V(t)}=r_{i} c_{i}
$$

where c_{i} is the concentration of solute in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank.

A tank with capacity 1000 L initially contains 250 L of pure water. At $t=0$, a salt water solution containing 0.25 kg salt per L is added at a rate of $20 \mathrm{~L} / \mathrm{min}$ and the mixed solution is drained off at a rate of $10 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank when it reaches the point of overflowing?

Solution: We have $r_{i}=20, r_{0}=10, c_{i}=0.25=1 / 4$, so $V=250+\left(r_{i}-r_{0}\right) t=250+10 t$. Hence the differential equation is

$$
\frac{d x}{d t}+\frac{10 x}{250+10 t}=\frac{20}{4} \Leftrightarrow \frac{d x}{d t}+\frac{x}{25+t}=5 .
$$

Use the method of the integrating factor, with

$$
\mu=e^{\int \frac{d t}{25+t}}=e^{\ln (25+t)}=25+t
$$

Then

$$
x=\frac{1}{(25+t)} \int 5(25+t) d t=\frac{1}{(25+t)}\left(\frac{5(25+t)^{2}}{2}+C\right)=\frac{5(25+t)}{2}+\frac{C}{(25+t)} .
$$

At $t=0, x=0$, so

$$
0=\frac{5(25)}{2}+\frac{C}{25} \Rightarrow C=-\frac{5^{5}}{2}
$$

Finally, $V=1000 \Leftrightarrow 250+10 t=1000 \Leftrightarrow t=75$, and at that time:

$$
x=\frac{5(100)}{2}-\frac{5^{3}}{2(100)}=234.375,
$$

exactly. So there will be 234.375 kg of salt in the tank when it reaches the point of overflowing.
8. [10 marks; avg: 2.11/10] The Gompertz growth model with $P>0$ has differential equation

$$
\frac{d P}{d t}=-r P \ln \left(\frac{P}{K}\right),
$$

for positive constants r and K.
(a) [4 marks] Find the equilibrium solution to the Gompertz model and determine if it is stable or unstable.

Solution: since r and P are both positive,

$$
\frac{d P}{d t}=0 \Rightarrow \ln \left(\frac{P}{K}\right)=0 \Rightarrow P=K
$$

Thus the equilibrium solution is $P=K$. It is a stable equilibrium since

1. if $P>K$, then $\ln \left(\frac{P}{K}\right)>\ln 1>0$, so

$$
\frac{d P}{d t}=-r P \ln \left(\frac{P}{K}\right)<0
$$

and the value of P will decrease, back towards the equilibrium value K.
2. On the other hand, if $P<K$, then $\ln \left(\frac{P}{K}\right)<\ln 1<0$, so

$$
\frac{d P}{d t}=-r P \ln \left(\frac{P}{K}\right)>0
$$

and the value of P will increase, back towards the equilibrium value K.
(b) [6 marks] Solve the Gompertz differential equation if $r=1, K=100$, and $P=20$ when $t=0$.

Solution: we have $r=1$ and $K=100$, so

$$
\frac{d P}{d t}=-P \ln \left(\frac{P}{100}\right)=-P(\ln P-\ln 100) .
$$

Separate variables:

$$
\begin{aligned}
\frac{d P}{d t}=-P(\ln P-\ln 100) & \Rightarrow \int \frac{d P}{P(\ln P-\ln 100)}=-\int d t \\
(\text { let } u=\ln P-\ln 100) & \Rightarrow \int \frac{d u}{u}=-t+C \\
& \Rightarrow \ln |u|=-t+C \\
& \Rightarrow \ln |\ln P-\ln 100|=-t+C
\end{aligned}
$$

To find C use the initial condition:

$$
\ln |\ln 20-\ln 100|=0+C \Leftrightarrow C=\ln |\ln 20-\ln 100|=\ln |-\ln 5|=\ln (\ln 5)
$$

Now solve for P :

$$
\begin{aligned}
\ln |\ln P-\ln 100|=-t+\ln (\ln 5) & \Rightarrow\left|\ln \left(\frac{P}{100}\right)\right|=e^{-t+\ln (\ln 5)}=e^{-t} \ln 5 \\
\left(\text { since } P_{0}=20<100\right) & \Rightarrow \ln \left(\frac{P}{100}\right)=-e^{-t} \ln 5 \\
& \Rightarrow \frac{P}{100}=e^{-e^{-t} \ln 5}=5^{-e^{-t}} \\
& \Rightarrow P=100 \cdot 5^{-e^{-t}} \text { or } P=\frac{100}{5^{-t}}
\end{aligned}
$$

For interest, the graph of P is here:

This page is for rough work; it will not be marked unless you have indicated to mark it.

This page is for rough work; it will not be marked unless you have indicated to mark it.

