University of Toronto
 Solutions to the MAT187H1S TERM TEST
 of Thursday, March 14, 2013

Duration: 100 minutes

General Comments:

1. In Question 1, if you don't get the correct integrating factor you may well have to integrate something that can't be integrated! This would basically result in a forfeit of 7 marks.
2. In Question 2 if you don't handle the absolute value signs properly - and a lot of students didn't-you will get nonsense, such as $\ln (-1)$ which is not defined, or $y=4 /\left(1-e^{4 x^{2}-4}\right)$, which is not defined at $x=1$.
3. Many students could not solve the quadratic in Question 3 properly!
4. If $\lim _{k \rightarrow \infty} u_{k} \neq 0$, then the infinite series $\sum u_{k}$ diverges. However, the converse of this statement is not true. Any solution that says an infinite series converges because the k th term goes to zero is worthless. Similarly, if $a_{k}<1 / k$, then the fact that the harmonic series diverges tells you nothing about $\sum a_{k}$; any conclusion about $\sum a_{k}$ is worthless.
5. Many students had real difficulty using proper notation in Question 7, or explaining what they were doing. Many students equated a series to the limit of its k th term, or a fraction to its limit. Some failed to use the ratio test properly, or did not prove the two hypotheses of the alternating series test. You must write and explain well!
6. Question 8 was right out of the homework.

Breakdown of Results: 502 students wrote this test. The marks ranged from 8.3% to 98.3%, and the average was 63.6%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	4.8%
A	19.1%	$80-89 \%$	14.3%
B	18.7%	$70-79 \%$	18.7%
C	23.1%	$60-69 \%$	23.1%
D	20.5%	$50-59 \%$	20.5%
F	18.6%	$40-49 \%$	12.2%
		$30-39 \%$	4.2%
		$20-29 \%$	1.2%
		$10-19 \%$	0.8%
		$0-9 \%$	0.2%

1. [8 marks] Solve the initial value problem for y as a function of x :

$$
\frac{d y}{d x}+y \tan x=\sec x+\cos x ; y=7 \text { when } x=\pi
$$

Solution: use the method of the integrating factor.

$$
\mu=e^{\int \tan x d x}=e^{\ln |\sec x|}=|\sec x|
$$

Multiply the original equation by either $\sec x$ or $-\sec x$, it will make no difference:

$$
\sec x \frac{d y}{d x}+y \sec x \tan x=\sec ^{2} x+\sec x \cos x \Leftrightarrow \frac{d(y \sec x)}{d x}=\sec ^{2} x+1 .
$$

Hence

$$
\begin{aligned}
y \sec x & =\int\left(\sec ^{2} x+1\right) d x=\tan x+x+C \\
\Rightarrow y & =\cos x(\tan x+x+C) \\
\Rightarrow y & =\sin x+x \cos x+C \cos x
\end{aligned}
$$

Use the initial condition to find C :

$$
7=\sin \pi+\pi \cos \pi+C \cos \pi \Leftrightarrow 7=-\pi-C \Leftrightarrow C=-7-\pi .
$$

Thus

$$
y=\sin x+x \cos x-(7+\pi) \cos x
$$

2. [8 marks] Solve the initial value problem for y as a function of x :

$$
\frac{d y}{d x}=2 x\left(y^{2}-4 y\right) ; y=2 \text { when } x=1 .
$$

Solution: separate variables:

$$
\int \frac{d y}{y^{2}-4 y}=\int 2 x d x \Leftrightarrow \int \frac{d y}{y(y-4)}=x^{2}+C
$$

Then integral on the left can be done by partial fractions:

$$
\int \frac{d y}{y(y-4)}=\int\left(\frac{1 / 4}{y-4}-\frac{1 / 4}{y}\right) d y=\frac{1}{4} \ln \left|\frac{y-4}{y}\right| .
$$

To find C use the initial conditions:

$$
\frac{1}{4} \ln \left|\frac{2-4}{2}\right|=1+C \Leftrightarrow 0=1+C \Leftrightarrow C=-1 .
$$

Therefore:

$$
\frac{1}{4} \ln \left|\frac{y-4}{y}\right|=x^{2}-1
$$

But you are not finished as you must still solve for y :

$$
\begin{aligned}
\frac{1}{4} \ln \left|\frac{y-4}{y}\right|=x^{2}-1 & \Rightarrow \ln \left|\frac{y-4}{y}\right|=4 x^{2}-4 \\
& \Rightarrow\left|\frac{y-4}{y}\right|=e^{4 x^{2}-4}
\end{aligned}
$$

(Note: at initial condition, $(y-4) / y<0) \Rightarrow \frac{4-y}{y}=e^{4 x^{2}-4}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4}{y}=1+e^{4 x^{2}-4} \\
& \Rightarrow \quad y=\frac{4}{1+e^{4 x^{2}-4}}
\end{aligned}
$$

So

$$
y=\frac{4}{1+e^{4 x^{2}-4}} .
$$

3. [8 marks] Solve the initial value problem

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+10 x(t)=0 ; \quad x(0)=2 ; \quad x^{\prime}(0)=1
$$

for x as a function of t.

Solution: the auxiliary quadratic is $r^{2}+2 r+10$. Solve:

$$
r^{2}+2 r+10=0 \Leftrightarrow r=\frac{-2 \pm \sqrt{4-40}}{2}=-1 \pm 3 i .
$$

Thus

$$
x=C_{1} e^{-t} \cos (3 t)+C_{2} e^{-t} \sin (3 t)
$$

To find C_{1} use the initial condition $x=2$ when $t=0$:

$$
2=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=2 .
$$

To find C_{2} you need to find x^{\prime} :

$$
x^{\prime}=C_{1}\left(-e^{-t} \cos (3 t)-3 e^{-t} \sin (3 t)\right)+C_{2}\left(-e^{-t} \sin (3 t)+3 e^{-t} \cos (3 t)\right) .
$$

Now substitute $t=0, x^{\prime}=1, C_{1}=2$:

$$
1=2(-1-0)+C_{2}(0+3) \Leftrightarrow 3 C_{2}=3 \Leftrightarrow C_{2}=1
$$

Thus

$$
x=2 e^{-t} \cos (3 t)+e^{-t} \sin (3 t) .
$$

4. [8 marks] Decide if each of the following infinite series converges or diverges. Mark your choice to the right, and justify your choice in the space provided.
(a) [2 marks] $\sum_{k=1}^{\infty} \frac{1}{k^{4}}$
\otimes Converges
\bigcirc Diverges

Justification: this is a p-series, with $p=4>1$; therefore it converges.
(b) [3 marks] $\sum_{k=1}^{\infty} \frac{k^{2}}{3 k^{4}+7 k^{2}+17}$
\otimes Converges
Diverges

Justification: use the limit comparison test with $b_{k}=\frac{1}{3 k^{2}}$:

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{3 k^{4}}{3 k^{4}+7 k^{2}+17}=1
$$

Since $\sum b_{k}$ converges (p-series with $p=2>1$) so does $\sum a_{k}$. You could also use the comparison test, since

$$
a_{k}<b_{k}
$$

(c) [3 marks] $\sum_{m=2}^{\infty} \frac{1}{m \ln m}$
\bigcirc Converges
\otimes Diverges

Justification: use the integral test, and let $u=\ln x$.

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}=\int_{\ln 2}^{\infty} \frac{d u}{u}=\lim _{b \rightarrow \infty}[\ln u]_{\ln (2)}^{b}=\infty
$$

So the series diverges by the integral test.
5. [10 marks] Recall: if $x(t)$ is the mass of solute dissolved in a solution of volume $V(t)$, at time t, in a large mixing tank, then

$$
\frac{d x(t)}{d t}+\frac{r_{o} x(t)}{V(t)}=r_{i} c_{i},
$$

where c_{i} is the concentration of solute in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank.

A tank with capacity 1000 L initially contains 500 L of water and 100 kg of dissolved salt. At $t=0$, a salt water solution containing 0.1 kg salt per L is added at a rate of $20 \mathrm{~L} / \mathrm{min}$ and the mixed solution is drained off at a rate of $10 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank when it reaches the point of overflowing?

Solution: We have $r_{i}=20, r_{0}=10, c_{i}=1 / 10$, so $V=500+\left(r_{i}-r_{0}\right) t=500+10 t$. Hence the differential equation is

$$
\frac{d x}{d t}+\frac{10 x}{500+10 t}=\frac{20}{10} \Leftrightarrow \frac{d x}{d t}+\frac{x}{50+t}=2 .
$$

Use the method of the integrating factor, with

$$
\mu=e^{\int \frac{d t}{50+t}}=e^{\ln (50+t)}=50+t
$$

Then

$$
\begin{gathered}
x=\frac{1}{50+t} \int(50+t) 2 d t=\frac{1}{50+t}\left(100 t+t^{2}+C\right) \\
\Rightarrow x=\frac{100 t+t^{2}+C}{50+t}
\end{gathered}
$$

At $t=0, x=100$, so

$$
100=\frac{C}{50} \Rightarrow C=5000
$$

Finally, $V=1000 \Leftrightarrow 500+10 t=1000 \Leftrightarrow t=50$, and at that time:

$$
x=\frac{100(50)+50^{2}+5000}{100}=125,
$$

exactly. So there will be 125 kg of salt in the tank when it reaches the point of overflowing.
6. [4 marks] A common mistake of beginning calculus students is to write

$$
\int \frac{d x}{f(x)}=\ln |f(x)|+C
$$

Find all differentiable functions $f(x)$ for which this formula is actually true.

Solution: Suppose the formula is true. Differentiate both sides:

$$
\begin{aligned}
\frac{1}{f(x)}=\frac{f^{\prime}(x)}{f(x)} & \Rightarrow f^{\prime}(x)=1 \\
& \Rightarrow f(x)=\int 1 d x \\
& \Rightarrow f(x)=x+C
\end{aligned}
$$

7. [8 marks; 4 marks for each part.] Determine if each of the following infinite series converges conditionally, converges absolutely, or diverges.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n^{n}}$

Solution: converges absolutely, by the ratio test:

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!} \frac{n^{n}}{(n+1)^{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)}{(n+1)}\left(\frac{n}{n+1}\right)^{n} \\
=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{-n}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}\right)^{-1}=\frac{1}{e}<1
\end{gathered}
$$

(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k+\sin ^{2} k}$

Solution: converges conditionally. The series

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k+\sin ^{2} k}
$$

converges by the alternating series test, since

$$
\lim _{k \rightarrow \infty} \frac{1}{k+\sin ^{2} k}=0
$$

and

$$
a_{k}>a_{k+1} \Leftrightarrow k+1+\sin ^{2}(k+1)>k+\sin ^{2} k \Leftrightarrow 1>\sin ^{2} k-\sin ^{2}(k+1),
$$

and this last statement is true because the difference of any two positive distinct numbers between 0 and 1 is less than 1 .
But the series

$$
\sum_{k=1}^{\infty}\left|(-1)^{k} \frac{1}{k+\sin ^{2} k}\right|=\sum_{k=1}^{\infty} \frac{1}{k+\sin ^{2} k}
$$

diverges by the limit comparison test, using

$$
a_{k}=\frac{1}{k+\sin ^{2} k}, b_{k}=\frac{1}{k} .
$$

That is, $\sum b_{k}$ is the harmonic series, which diverges, and

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{k}{k+\sin ^{2} k}=\lim _{k \rightarrow \infty} \frac{1}{1+\left(\sin ^{2} k\right) / k}=\frac{1}{1+0}=1 .
$$

8. [6 marks.] A ball is dropped from a height of 10 m . Each time it strikes the ground it bounces up vertically to a height that is $\frac{3}{4}$ of the preceding height. Find the total distance the ball will travel if it is assumed to bounce infinitely often.

Solution: the total distance travelled by the ball is

$$
\begin{aligned}
D & =10+2\left(\frac{3}{4}\right) 10+2\left(\frac{3}{4}\right)^{2} 10+2\left(\frac{3}{4}\right)^{3} 10+\cdots \\
& =10+2\left(\frac{3}{4}\right) 10\left(1+\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\cdots\right) \\
& =10+15 \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \\
& =10+15\left(\frac{1}{1-3 / 4}\right) \\
& =10+15(4) \\
& =70
\end{aligned}
$$

