University of Toronto
 Solutions to the MAT187H1S TERM TEST
 of Thursday, March 10, 2011

Duration: 100 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.
Instructions: Make sure this test contains 8 pages. Do not remove any pages from this test. Answer all questions. Present your solutions in the space provided. This means: show your work! The value for each question is indicated in parentheses beside the question number. TOTAL MARKS: 60

General Comments:

1. Many students are still confused about absolute values. In Question 1, the two equations

$$
e^{y}=\frac{x^{2}}{2}-7 \text { and } y=\ln \left|\frac{x^{2}}{2}-7\right|
$$

are not the same. For example, $(0, \ln 7)$ is a solution to the equation on the right, but $(0, \ln 7)$ is not a solution to the equation on the left. The fact that the TA did not deduct a mark for this is not doing anybody any good! You can rest assured that confusion with absolute values on the final exam will cost you marks.
2. If $\lim _{k \rightarrow \infty} u_{k} \neq 0$, then the infinite series $\sum_{k=0}^{\infty} u_{k}$ diverges. However, the converse of this statement is not true. Any solution that says an infinite series converges because the k th term goes to zero is worthless.
3. In Question 7 (b) many students used $\sqrt[n]{3^{-n}+4^{-n}}=3^{-1}+4^{-1}$, or something equally untrue. Such algebraic bloopers will get you zero every time.

Breakdown of Results: 473 students wrote this test. The marks ranged from 23.3% to 98.3%, and the average was 67.6%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	4.4%
A	21.5%	$80-89 \%$	17.1%
B	26.0%	$70-79 \%$	26.0%
C	27.1%	$60-69 \%$	27.1%
D	16.9%	$50-59 \%$	16.9%
F	8.4%	$40-49 \%$	6.1%
		$30-39 \%$	1.7%
		$20-29 \%$	0.6%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

1. [6 marks] Find the equation of a curve with x-intercept 4 whose tangent line at any point (x, y) has slope $x e^{-y}$.

Solution: Stated as an initial value problem, the question is: solve for y if

$$
\frac{d y}{d x}=\frac{x}{e^{y}} \text { and } y=0 \text { if } x=4 .
$$

Separate variables;

$$
\begin{aligned}
\frac{d y}{d x}=\frac{x}{e^{y}} & \Rightarrow \int e^{y} d y=\int x d x \\
& \Rightarrow e^{y}=\frac{x^{2}}{2}+C \\
& \Rightarrow y=\ln \left(\frac{x^{2}}{2}+C\right)
\end{aligned}
$$

To find C, substitute $x=4$ and $y=0$:

$$
e^{0}=\frac{16}{2}+C \Leftrightarrow C=-7 \text {. }
$$

Thus either of the following equations will do:

$$
e^{y}=\frac{x^{2}}{2}-7 \text { or } y=\ln \left(\frac{x^{2}}{2}-7\right) .
$$

2. [9 marks] The parts of this question are unrelated.
(a) [5 marks] Indicate whether or not each of the following differential equations could have a solution (y in terms of x) with a graph that looks like the graph below. It is not necessary to justify your choice.

(1) $y^{\prime \prime}-4 y=0$	\bigotimes No	$\bigcirc Y e s$
(2) $y^{\prime \prime}+4 y^{\prime}+4 y=0$	\bigcirc No	\bigotimes Yes
(3) $y^{\prime \prime}-3 y^{\prime}+2 y=0$	\bigotimes No	YYes
(4) $y^{\prime \prime}+3 y^{\prime}+2 y=0$	\bigcirc No	\bigotimes Yes
(5) $y^{\prime \prime}+4 y=0$	\bigotimes No	Yes

Solution: y must satisfy: $y(0)=0 ; x>0 \Rightarrow y>0 ; y^{\prime}(0)>0$; and $\lim _{x \rightarrow \infty} y=0$. The solutions for (1), $y=A e^{2 x}+B e^{-2 x}$, for (3), $y=A e^{x}+B e^{2 x}$, and for (5), $y=A \cos (2 x)+B \sin (2 x)$, don't satisfy $\lim _{x \rightarrow \infty} y=0$, unless $A=B=0$.
The solutions for (2), $y=A e^{-2 x}+B x e^{-2 x}$, and for (4), $y=A e^{-2 x}+B e^{-x}$, can satisfy these conditions. For (2), take $A=0$ and $B>0$. For (4), take $B=-A$ and $A<0$.
(b) [4 marks] Consider the initial value problem

$$
\frac{d y}{d x}=2 x e^{x^{2}}\left(1+y^{2}\right) ; \quad y(0)=\sqrt{3} .
$$

Find the only critical point of y and determine if it is a maximum or a minimum point.

Solution:

$$
\frac{d y}{d x}=2 x e^{x^{2}}\left(1+y^{2}\right) \Rightarrow \begin{cases}\frac{d y}{d x}>0 & \Leftrightarrow x>0 \\ \frac{d y}{d x}=0 & \Leftrightarrow x=0 \\ \frac{d y}{d x}<0 & \Leftrightarrow x<0\end{cases}
$$

Thus the only critical point, $(0, \sqrt{3})$, is a minimum point, by the first derivative test.
3. [8 marks] Solve the initial value problem

$$
x \frac{d y}{d x}-y=4 x^{2} ; \quad y(3)=-12
$$

for y as a function of x.

Solution: use the method of the integrating factor. But first you have to rewrite the given differential equation as

$$
\frac{d y}{d x}-\frac{y}{x}=4 x
$$

from which the integrating factor is

$$
\mu=e^{\int(-1 / x) d x}=e^{-\ln |x|}=\frac{1}{|x|}
$$

Take either $\mu= \pm 1 / x$; then the general solution is

$$
\begin{aligned}
y & =\frac{\int \mu 4 x d x}{\mu} \\
& =x \int 4 d x \\
& =x(4 x+C) \\
& =4 x^{2}+C x
\end{aligned}
$$

Particular Solution: let $x=3, y=-12$ and solve for C :

$$
-12=36+3 C \Leftrightarrow C=-16 .
$$

Thus:

$$
y=4 x^{2}-16 x
$$

4. [9 marks] Solve for y as a function of x if $y^{\prime \prime}+4 y^{\prime}+13 y=0$ and $y(0)=2, y^{\prime}(0)=5$.

Solution: the auxiliary quadratic is $r^{2}+4 r+13$. Solve:

$$
r^{2}+4 r+13=0 \Leftrightarrow r=\frac{-4 \pm \sqrt{16-52}}{2}=-2 \pm 3 i
$$

Thus

$$
y=C_{1} e^{-2 x} \cos (3 x)+C_{2} e^{-2 x} \sin (3 x)
$$

To find C_{1} use the initial condition $y=2$ when $x=0$:

$$
2=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=2 .
$$

To find C_{2} you need to find y^{\prime} :

$$
y^{\prime}=C_{1}\left(-2 e^{-2 x} \cos (3 x)-3 e^{-2 x} \sin (3 x)\right)+C_{2}\left(-2 e^{-2 x} \sin (3 x)+3 e^{-2 x} \cos (3 x)\right)
$$

Now substitute $x=0, y^{\prime}=5, C_{1}=2$:

$$
5=2(-2-0)+C_{2}(0+3) \Leftrightarrow 3 C_{2}=9 \Leftrightarrow C_{2}=3
$$

Thus

$$
y=2 e^{-2 x} \cos (3 x)+3 e^{-2 x} \sin (3 x)
$$

5. [10 marks] Decide if each of the following infinite series converges or diverges. Mark your choice to the right, and justify your choice in the space provided.
(a) $[3$ marks $] \sum_{k=1}^{\infty} \frac{k}{\ln (k+5)}$

Converges
\otimes Diverges

Justification:

$$
\lim _{k \rightarrow \infty} \frac{k}{\ln (k+5)}=\lim _{k \rightarrow \infty} \frac{k+5}{1}=\infty \neq 0
$$

(b) [3 marks] $\sum_{m=1}^{\infty} \frac{13 \cos ^{2} m}{m^{3}}$
\otimes ConvergesDiverges

Justification: by comparison with the p-series, with $p=3$. Since

$$
\frac{13 \cos ^{2} m}{m^{3}} \leq \frac{13}{m^{3}}
$$

and $\sum_{m=1}^{\infty} \frac{13}{m^{3}}=13 \sum_{m=1}^{\infty} \frac{1}{m^{3}}$ converges, so does $\sum_{m=1}^{\infty} \frac{13 \cos ^{2} m}{m^{3}}$, by comparison.
(c) $[4$ marks $] \sum_{n=2}^{\infty} \frac{\ln n}{6 e^{2 n}}$
\otimes Converges
\bigcirc Diverges

Justification: by the ratio test.

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{e^{2 n} \ln (n+1)}{e^{2 n+2} \ln n}=\frac{1}{e^{2}} \lim _{n \rightarrow \infty} \frac{n}{n+1}=\frac{1}{e^{2}}<1 .
$$

Note: the root test works as well, but you have to establish

$$
\lim _{n \rightarrow \infty}(\ln n)^{1 / n}=1
$$

which requires some work.
6. [10 marks] A tank with capacity 1500 L initially contains 400 L of water that is polluted with 30 kg of particulate matter. At $t=0$, pure water is added at a rate of $20 \mathrm{~L} / \mathrm{min}$ and the mixed solution is drained off at a rate of $10 \mathrm{~L} / \mathrm{min}$.
You may assume that if $x(t)$ is the mass of solute dissolved in a solution of volume $V(t)$, at time t, in a large mixing tank, then

$$
\frac{d x(t)}{d t}+\frac{r_{o} x(t)}{V(t)}=r_{i} c_{i}
$$

where c_{i} is the concentration of solute in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank.
(a) [4 marks] Declare the values of r_{o}, r_{i}, c_{i} and $V(t)$ that you are using:

$$
r_{o}=\underline{10}, \quad r_{i}=\underline{20}, \quad c_{i}=\underline{0}, \quad V(t)=\underline{400+\left(r_{i}-r_{o}\right) t=400+10 t}
$$

(b) [6 marks] How much particulate matter is in the tank when it reaches the point of overflowing?

Solution: since $c_{i}=0$, the differential equation is separable.

$$
\frac{d x}{d t}+\frac{10 x}{400+10 t}=0 \Rightarrow \int \frac{d x}{x}=-\int \frac{d t}{40+t} \Rightarrow \ln |x|=-\ln |40+t|+C
$$

We have $x_{0}=30 \Rightarrow C=\ln 30+\ln 40=\ln 1200$. The tank is full when

$$
V(t)=1500 \Leftrightarrow 400+10 t=1500 \Leftrightarrow t=110 .
$$

When $t=110$,

$$
\ln x=-\ln (40+110)+\ln 1200=\ln 8 \Rightarrow x=8
$$

So there will be 8 kg of particulate matter in the tank when it reaches the point of overflowing.

Alternate Solution: The integrating factor of the differential equation

$$
\frac{d x}{d t}+\frac{x}{40+t}=0
$$

is $\mu=e^{\int \frac{d t}{40+t}}=e^{\ln (40+t)}=(40+t)$, and so $x=C / \mu=C /(40+t)$. We have $x_{0}=30 \Rightarrow C=1200$. When $t=110, x=1200 / 150=8$, as before.
7. [8 marks; 4 for each part.] The parts of this question are unrelated.
(a) Find the exact sum of the infinite series $\sum_{k=0}^{\infty}\left(\frac{1}{3^{k}}-\frac{2}{5^{k+2}}\right)$

Solution: use the sum of an infinite geometric series, $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$, if $|r|<1$.

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left(\frac{1}{3^{k}}-\frac{2}{5^{k+2}}\right) & =\sum_{k=0}^{\infty}\left(\frac{1}{3}\right)^{k}-\frac{2}{5^{2}} \sum_{k=0}^{\infty}\left(\frac{1}{5}\right)^{k} \\
& =\frac{1}{1-1 / 3}-\frac{2}{25} \cdot \frac{1}{1-1 / 5} \\
& =\frac{3}{2}-\frac{2}{25} \cdot \frac{5}{4} \\
& =\frac{3}{2}-\frac{1}{10} \\
& =\frac{7}{5}
\end{aligned}
$$

(b) Does the infinite series $\sum_{n=0}^{\infty} \frac{4^{-n}+3^{-n}}{2^{-n}+3^{-n}}$ converge or diverge? Justify your answer.

Solution:

$0<a_{n}=\frac{4^{-n}+3^{-n}}{2^{-n}+3^{-n}}=\left(\frac{12^{n}}{12^{n}}\right)\left(\frac{4^{-n}+3^{-n}}{2^{-n}+3^{-n}}\right)=\frac{3^{n}+4^{n}}{6^{n}+4^{n}}<\frac{3^{n}+4^{n}}{6^{n}}=\frac{1}{2^{n}}+\frac{2^{n}}{3^{n}}$
Since both

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}} \text { and } \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}
$$

are convergent infinite geometric series, the original series

$$
\sum_{n=0}^{\infty} \frac{4^{-n}+3^{-n}}{2^{-n}+3^{-n}}
$$

converges by the comparison test.
Note: the limit comparison test with $b_{n}=\left(\frac{2}{3}\right)^{n}$ works as well.

