University of Toronto
Solutions to the MAT187H1S TERM TEST
of Thursday, March 12, 2009
Duration: 90 minutes

Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.
Instructions: Make sure this test contains 8 pages. Do not remove any pages from this test. Answer all questions. Present your solutions in the space provided. This means: show your work! The value for each question is indicated in parentheses beside the question number. TOTAL MARKS: 60

Comments and Results:

1. Questions 1, 2 and 4 are completely routine; everyone should have aced them.
2. Question 3 can be simplified in many ways; the given parametric equations describe a circle.
3. To set things up in Question 5 you need to use similar triangles.
4. Question 6 was almost an exact copy of last year's question 6 ; sorry about that!
5. Question 7 was right out of the homework from Section 8.5 ; see $\# 3$ on page 628. Two marks were deducted if you didn't handle the absolute value signs correctly, and three marks were deducted if you didn't solve for y. Finally, you can't let $y=\sin \theta$ in this question since then $|y| \leq 1$, contradicting the initial condition $y=3$ if $x=0$. You could let $y=\sec \theta$, instead of using partial fractions.

Breakdown of Results: 427 students wrote this test. The marks ranged from 11.7% to 100%, and the average was 68.5%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	11.2%
A	30.9%	$80-89 \%$	19.7%
B	21.1%	$70-79 \%$	21.1%
C	16.9%	$60-69 \%$	16.9%
D	18.3%	$50-59 \%$	18.3%
F	12.9%	$40-49 \%$	8.7%
		$30-39 \%$	3.7%
		$20-29 \%$	0.2%
		$10-19 \%$	0.2%
		$0-9 \%$	0.0%

1. [8 marks] Consider the curve with parametric equations

$$
x=t^{3} ; y=t^{2}+\ln t
$$

Find both

$$
\frac{d y}{d x} \text { and } \frac{d^{2} y}{d x^{2}}
$$

at the point on the curve at which $t=1$.

Solution: for $t \neq 0$:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t+1 / t}{3 t^{2}}=\frac{2}{3 t}+\frac{1}{3 t^{3}}
$$

and

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(\frac{2}{3 t}+\frac{1}{3 t^{3}}\right)}{3 t^{2}}=-\frac{\left(\frac{2}{3 t^{2}}+\frac{1}{t^{4}}\right)}{3 t^{2}}=-\frac{2}{9 t^{4}}-\frac{1}{3 t^{6}}
$$

So at $t=1$,

$$
\frac{d y}{d x}=\frac{2}{3}+\frac{1}{3}=1
$$

and

$$
\frac{d^{2} y}{d x^{2}}=-\frac{2}{9}-\frac{1}{3}=-\frac{5}{9} .
$$

2. [10 marks] Solve for $x(t)$ as a function of t if

$$
x^{\prime \prime}(t)+12 x^{\prime}(t)+100 x(t)=0 ; \quad x(0)=12 \text { and } x^{\prime}(0)=-32
$$

Sketch the graph of $x(t)$ for $0 \leq t \leq \pi / 2$, and find the pseudo period and the time-varying amplitude of $x(t)$.

Solution: the auxiliary quadratic is $r^{2}+12 r+100$. Solve:

$$
r^{2}+12 r+100=0 \Leftrightarrow r=\frac{-12 \pm \sqrt{144-400}}{2}=-6 \pm 8 i .
$$

Thus

$$
x=C_{1} e^{-6 t} \cos (8 t)+C_{2} e^{-6 t} \sin (8 t) .
$$

To find C_{1} use the initial condition $x=12$ when $t=0$:

$$
12=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=12 .
$$

To find C_{2} you need to find x^{\prime} :

$$
x^{\prime}=C_{1}\left(-6 e^{-6 t} \cos (8 t)-8 e^{-6 t} \sin (8 t)\right)+C_{2}\left(-6 e^{-6 t} \sin (8 t)+8 e^{-6 t} \cos (8 t)\right)
$$

Now substitute $t=0, x^{\prime}=-32, C_{1}=12$:

$$
-32=12(-6-0)+C_{2}(0+8) \Leftrightarrow 8 C_{2}=42 \Leftrightarrow C_{2}=5
$$

Thus

$$
x=12 e^{-6 t} \cos (8 t)+5 e^{-6 t} \sin (8 t)=13 e^{-6 t} \cos \left(8 t-\tan ^{-1}\left(\frac{5}{12}\right)\right) .
$$

Graph:

The pseudo period is

$$
\frac{2 \pi}{8}=\frac{\pi}{4}
$$

time-varying amplitude is

$$
\sqrt{12^{2}+5^{2}} e^{-6 t}=13 e^{-6 t}
$$

3. [8 marks] Consider the curve with parametric equations

$$
x=\sin ^{2} t, y=\sin t \cos t, \text { for } 0 \leq t \leq \frac{\pi}{2} .
$$

Sketch this curve and compute its arc length.

Solution: $t=0 \Rightarrow(x, y)=(0,0) ; t=\pi / 2 \Rightarrow(x, y)=(1,0)$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{\prime}(t)}{x^{\prime}(t)} \\
& =\frac{\cos ^{2} t-\sin ^{2} t}{2 \sin t \cos t} \\
\text { (optional) } & =\frac{\cos (2 t)}{\sin (2 t)}
\end{aligned}
$$

$\frac{d y}{d x}=0 \Rightarrow t=\frac{\pi}{4} \Rightarrow(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)$, which is the maximum point on the graph.

Arc Length:

$$
\begin{aligned}
L & =\int_{0}^{\pi / 2} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{\pi / 2} \sqrt{(2 \sin t \cos t)^{2}+\left(\cos ^{2} t-\sin ^{2} t\right)^{2}} d t \\
& =\int_{0}^{\pi / 2} \sqrt{4 \sin ^{2} t \cos ^{2} t+\cos ^{4} t-2 \sin ^{2} t \cos ^{2} t+\sin ^{4} t} d t \\
& =\int_{0}^{\pi / 2} \sqrt{\cos ^{4} t+2 \sin ^{2} t \cos ^{2} t+\sin ^{4} t} d t \\
& =\int_{0}^{\pi / 2} \sqrt{\left(\cos ^{2} t+\sin ^{2} t\right)^{2}} d t \\
& =\int_{0}^{\pi / 2} d t=\frac{\pi}{2}
\end{aligned}
$$

Easier Calculation: $L=\int_{0}^{\pi / 2} \sqrt{\sin ^{2}(2 t)+\cos ^{2}(2 t)} d t=\int_{0}^{\pi / 2} d t=\frac{\pi}{2}$.
Alternate Solution: $r^{2}=x^{2}+y^{2}=\sin ^{4} t+\sin ^{2} t \cos ^{2} t=\sin ^{2} t \Rightarrow r=\sin t$, which is the polar equation of a circle with centre $(1 / 2,0)$ and radius $1 / 2$; half of its circumference is $\pi / 2$.
4. [8 marks] Find the area of the region within the cardioid with polar equation $r=2+2 \sin \theta$ but outside the circle with polar equation $r=1$.

Solution: find the intersection points.

$$
\begin{aligned}
& 2+2 \sin \theta=1 \\
\Rightarrow & \sin \theta=-\frac{1}{2} \\
\Rightarrow & \theta=-\frac{\pi}{6} \text { or } \frac{7 \pi}{6}
\end{aligned}
$$

Set Up:

$$
A=\frac{1}{2} \int_{-\pi / 6}^{7 \pi / 6}\left((2+2 \sin \theta)^{2}-1^{2}\right) d \theta \text { or } A=\int_{-\pi / 6}^{\pi / 2}\left((2+2 \sin \theta)^{2}-1^{2}\right) d \theta
$$

Calculation:

$$
\begin{aligned}
A & =\int_{-\pi / 6}^{\pi / 2}\left((2+2 \sin \theta)^{2}-1^{2}\right) d \theta \\
& =\int_{-\pi / 6}^{\pi / 2}\left(3+8 \sin \theta+4 \sin ^{2} \theta\right) d \theta \\
& =\int_{-\pi / 6}^{\pi / 2}(3+8 \sin \theta+2(1-\cos (2 \theta))) d \theta \\
& =\int_{-\pi / 6}^{\pi / 2}(5+8 \sin \theta-2 \cos (2 \theta)) d \theta \\
& =[5 \theta-8 \cos \theta-\sin (2 \theta)]_{-\pi / 6}^{\pi / 2} \\
& =\frac{5 \pi}{2}-0-0+\frac{5 \pi}{6}+4 \sqrt{3}-\frac{\sqrt{3}}{2} \\
& =\frac{10 \pi}{3}+\frac{7 \sqrt{3}}{2}
\end{aligned}
$$

5. [8 marks] Torricelli's Law states that

$$
A(y) \frac{d y}{d t}=-a \sqrt{2 g y}
$$

where y is the depth of a fluid in a tank at time $t, A(y)$ is the cross-sectional area of the tank at height y above the exit hole, a is the cross-sectional area of the exit hole, and g is the acceleration due to gravity.

A water tank is in the shape of an inverted cone. Its height is 2 m and the radius of its circular top is 1 m . The tank is initially full of water. At 12 noon a plug at the bottom of the tank is removed, and 20 min later the depth of water in the tank is 1 m . At what time will the tank be completely empty?

Solution:

By similar triangles

$$
\begin{aligned}
\frac{x}{y} & =\frac{1}{2} \\
\Rightarrow x & =\frac{y}{2}
\end{aligned}
$$

So

$$
A(y)=\pi x^{2}=\frac{\pi y^{2}}{4}
$$

Solve the DE by separating variables:

$$
\begin{aligned}
A(y) \frac{d y}{d t}=-a \sqrt{2 g y} & \Leftrightarrow \pi \int \frac{y^{2}}{4 \sqrt{y}} d y=-\pi \int K d t, \text { for } K=\frac{a \sqrt{2 g}}{\pi} \\
& \Leftrightarrow \frac{1}{4} \int\left(y^{3 / 2}\right) d y=-\int K d t \\
& \Leftrightarrow \frac{y^{5 / 2}}{10}=-K t+C, \text { for some } C
\end{aligned}
$$

Let t be measured in minutes; let $t=0$ be noon. When $t=0, y=2$, so

$$
\frac{2^{5 / 2}}{10}=C \Leftrightarrow C=\frac{2 \sqrt{2}}{5} .
$$

When $t=20, y=1$, so

$$
\frac{1}{10}=-20 K+\frac{2 \sqrt{2}}{5} \Leftrightarrow 20 K=\frac{2 \sqrt{2}}{5}-\frac{1}{10} \Leftrightarrow K=\frac{4 \sqrt{2}-1}{200}
$$

The tank is empty when $y=0$:

$$
0=-K t+C \Leftrightarrow t=\frac{C}{K}=\frac{80 \sqrt{2}}{4 \sqrt{2}-1} \simeq 24.3
$$

So the tank will be empty at about 12:24 PM.
6. [10 marks] If x is the mass of salt dissolved in a saline solution of volume V, at time t, in a large mixing tank, then

$$
\frac{d x}{d t}+\frac{r_{o}}{V} x=r_{i} c_{i}
$$

where c_{i} is the concentration of salt in a solution entering the mixing tank at rate r_{i}, and r_{o} is the rate at which the well-mixed solution is leaving the tank. A 150 -liter tank initially contains 100 liters of brine (i.e. saline solution) containing 20 kg of salt. Brine containing 1 kg of salt per liter enters the tank at the rate of 5 liters per sec, and the well-mixed brine in the tank flows out at the rate of 3 liters per sec. How many kilograms of salt will the tank contain when it is full?

Solution: $V=100+\left(r_{i}-r_{o}\right) t=100+2 t$. The integrating factor of the differential equation

$$
\frac{d x}{d t}+\frac{3}{100+2 t} x=5
$$

is

$$
\rho=e^{\int \frac{3}{100+2 t} d t}=e^{3 \ln (100+2 t) / 2}=(100+2 t)^{3 / 2}
$$

and so

$$
x=\frac{\int 5 \rho d t}{\rho}=\frac{(100+2 t)^{5 / 2}+C}{(100+2 t)^{3 / 2}}=(100+2 t)+\frac{C}{(100+2 t)^{3 / 2}} .
$$

Use the initial condition $t=0, x=20$ to find C :

$$
20=100+\frac{C}{100^{3 / 2}} \Leftrightarrow C=-80000
$$

Thus

$$
x=(100+2 t)-\frac{80000}{(100+2 t)^{3 / 2}} .
$$

The tank is full when $V=150 \Leftrightarrow 100+2 t=150 \Leftrightarrow t=25$. At $t=25$,

$$
x=(100+50)-\frac{80000}{(100+50)^{3 / 2}}=150-\frac{32}{9} \sqrt{150} \simeq 106.45 .
$$

So when the tank is full of brine it contains about 106.45 kilograms of salt.
7. [8 marks] Solve for y as a function of x if

$$
\frac{d y}{d x}=1-y^{2} \text { and } y=3 \text { if } x=0
$$

Soluiton: separate variables.

$$
\begin{aligned}
\int \frac{1}{1-y^{2}} d y=\int d x & \Rightarrow \int \frac{1}{(1+y)(1-y)} d y=x+c \\
(\text { partial fractions) } & \Rightarrow \frac{1}{2} \int\left(\frac{1}{1+y}+\frac{1}{1-y}\right) d y=x+c \\
& \Rightarrow \frac{1}{2}(\ln |1+y|-\ln |1-y|)=x+c \\
& \Rightarrow \ln \left|\frac{1+y}{1-y}\right|=2 x+c^{\prime}
\end{aligned}
$$

To find c^{\prime}, substitute $x=0$ and $y=3$:

$$
c^{\prime}=\ln \left|\frac{1+3}{1-3}\right|=\ln 2
$$

Now solve for y :

$$
\begin{aligned}
\ln \left|\frac{1+y}{1-y}\right|=2 x+\ln 2 & \Rightarrow\left|\frac{1+y}{1-y}\right|=e^{2 x+\ln 2}=2 e^{2 x} \\
& \Rightarrow \frac{1+y}{1-y}=-2 e^{2 x}, \text { since } y=3, \text { if } x=0 \\
& \Rightarrow 1+y=-2 e^{2 x}+2 y e^{2 x} \\
& \Rightarrow y\left(1-2 e^{2 x}\right)=-1-2 e^{2 x} \\
& \Rightarrow y=\frac{1+2 e^{2 x}}{2 e^{2 x}-1}
\end{aligned}
$$

