University of Toronto
Solutions to MAT187H1S TERM TEST
of Thursday, March 20, 2008

Duration: 90 minutes
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.
Instructions: Make sure this test has 8 pages. Answer all questions. Present your solutions in the space provided. The value for each question is indicated in parantheses beside the question number.

TOTAL MARKS: 60
Comments and Results: The marks on this test were on average much lower than on the first test. Nevertheless, the questions on this test are all very routine; four of them were right out of the homework. Nobody - nobody who did their homework! - should have failed this test.

Concerning Question 5, part (b): you can't use the second derivative test to show that $x=200$ is a maximum since

$$
\begin{aligned}
\frac{d x}{d t}=(0.8) x-(0.004) x^{2} & \Rightarrow \frac{d^{2} x}{d t^{2}}=(0.8) \frac{d x}{d t}-(0.008) x \frac{d x}{d t} \\
& \Rightarrow \frac{d^{2} x}{d t^{2}}=0 \text { at the critical value } x=200
\end{aligned}
$$

which means the second derivative test doesn't apply.
Breakdown of Results: 469 students wrote this test. The marks ranged from 7% to 100%, and the average was 63.5%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	7.7%
A	22.2%	$80-89 \%$	14.5%
B	15.6%	$70-79 \%$	15.6%
C	22.2%	$60-69 \%$	22.2%
D	18.1%	$50-59 \%$	18.1%
F	21.9%	$40-49 \%$	13.0%
		$30-39 \%$	6.0%
		$20-29 \%$	2.1%
		$10-19 \%$	0.4%
		$0-9 \%$	0.4%

1. [8 marks] Consider the curve with parametric equations

$$
x=t^{2}+4 t ; y=t^{3}-3 t
$$

Find both

$$
\frac{d y}{d x} \text { and } \frac{d^{2} y}{d x^{2}}
$$

in terms of the parameter t.

Solution:

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t^{2}-3}{2 t+4} \\
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(\frac{3 t^{2}-3}{2 t+4}\right)}{2 t+4}=\frac{\frac{6 t(2 t+4)-2\left(3 t^{2}-3\right)}{(2 t+4)^{2}}}{2 t+4}=\frac{6 t^{2}+24 t+6}{(2 t+4)^{3}}
\end{gathered}
$$

2. [8 marks] Solve for y as a function of x if

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0 ; y(0)=9, y^{\prime}(0)=10
$$

Solution: the auxiliary quadratic is $r^{2}+4 r+20$. Solve:

$$
r^{2}+4 r+20=0 \Leftrightarrow r=\frac{-4 \pm \sqrt{16-80}}{2}=-2 \pm 4 i
$$

Thus

$$
y=C_{1} e^{-2 x} \cos (4 x)+C_{2} e^{-2 x} \sin (4 x)
$$

To find C_{1} use the initial condition $y=9$ when $x=0$:

$$
9=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=9
$$

To find C_{2} you need to find y^{\prime} :
$y^{\prime}=C_{1}\left(-2 e^{-2 x} \cos (4 x)-4 e^{-2 x} \sin (4 x)\right)+C_{2}\left(-2 e^{-2 x} \sin (4 x)+4 e^{-2 x} \cos (4 x)\right)$.
Now substitute $x=0, y^{\prime}=10, C_{1}=9$:

$$
10=9(-2-0)+C_{2}(0+4) \Leftrightarrow 4 C_{2}=28 \Leftrightarrow C_{2}=7
$$

Thus

$$
y=9 e^{-2 x} \cos (4 x)+7 e^{-2 x} \sin (4 x)
$$

3. [8 marks] Consider the curve with parametric equations

$$
x=\sin t, y=\sin t \cos t, \text { for } 0 \leq t \leq \frac{\pi}{2}
$$

Plot this curve and compute the volume of the solid of revolution produced by revolving the curve around the x-axis.

Solution:

$t=0 \Rightarrow(x, y)=(0,0)$.
$t=\pi / 2 \Rightarrow(x, y)=(1,0)$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\cos ^{2} t-\sin ^{2} t}{\cos t}=0 \\
\Rightarrow t & =\frac{\pi}{4}
\end{aligned}
$$

$t=\pi / 4 \Rightarrow(x, y)=(1 / \sqrt{2}, 1 / 2) ;$
which is the maximum point.

$$
\begin{aligned}
V & =\int_{0}^{1} \pi y^{2} d x \\
& =\pi \int_{0}^{\pi / 2} \sin ^{2} t \cos ^{2} t \cos t d t \\
& =\pi \int_{0}^{\pi / 2} \sin ^{2} t\left(1-\sin ^{2} t\right) \cos t d t \\
(\text { Let } u=\sin t) & =\pi \int_{0}^{1} u^{2}\left(1-u^{2}\right) d u \\
& =\pi \int_{0}^{1}\left(u^{2}-u^{4}\right) d u \\
& =\pi\left[\frac{1}{3} u^{3}-\frac{1}{5} u^{5}\right]_{0}^{1} \\
& =\pi\left(\frac{1}{3}-\frac{1}{5}\right) \\
& =\frac{2 \pi}{15}
\end{aligned}
$$

Alternate solution: eliminate the parameter: $y=x \sqrt{1-x^{2}}, 0 \leq x \leq 1$. So

$$
V=\int_{0}^{1} \pi y^{2} d x=\pi \int_{0}^{1} x^{2}\left(1-x^{2}\right) d x=\frac{2 \pi}{15} .
$$

4. [8 marks] Plot the polar curve with polar equation $r^{2}=\cos \theta+\sin \theta$ for

$$
-\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}
$$

and find the area within the curve.

Solution:

$$
\begin{aligned}
& \theta=-\pi / 4 \Rightarrow r^{2}=0 \\
& \theta=0 \Rightarrow r^{2}=1 \\
& \theta=\pi / 4 \Rightarrow r^{2}=\sqrt{2} \\
& \theta=\pi / 2 \Rightarrow r^{2}=1 \\
& \theta=3 \pi / 4 \Rightarrow r^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
r^{2} & =\cos \theta+\sin \theta \\
\Rightarrow r & = \pm \sqrt{\cos \theta+\sin \theta}
\end{aligned}
$$

$r>0$ is the red curve; $r<0$ is the
 green curve.

$$
\begin{aligned}
A & =2\left(\frac{1}{2} \int_{-\pi / 4}^{3 \pi / 4} r^{2} d \theta\right) \\
& =\int_{-\pi / 4}^{3 \pi / 4}(\cos \theta+\sin \theta) d \theta \\
& =[\sin \theta-\cos \theta]_{-\pi / 4}^{3 \pi / 4} \\
& =\sin \left(\frac{3 \pi}{4}\right)-\cos \left(\frac{3 \pi}{4}\right)-\sin \left(-\frac{\pi}{4}\right)+\cos \left(-\frac{\pi}{4}\right) \\
& =\frac{4}{\sqrt{2}} \\
& =2 \sqrt{2}
\end{aligned}
$$

5. [10 marks] As the salt KNO_{3} dissolves in methanol, the number $x(t)$ of grams of the salt in solution after t seconds satisfies the differential equation

$$
\frac{d x}{d t}=(0.8) x-(0.004) x^{2} .
$$

(a) [6 marks] If $x=50$ when $t=0$, how long will it take an additional 50 g of salt to dissolve?
Solution: this is logistic growth.

$$
\begin{aligned}
\frac{d x}{d t} & =(0.8) x-(0.004) x^{2}=0.8 x\left(1-\frac{x}{200}\right) \\
\Rightarrow x & =\frac{200}{1+A e^{-0.8 t}}, \text { for some constant } A
\end{aligned}
$$

Use the initial condition $t=0, x=50$ to find A :

$$
50=\frac{200}{1+A} \Leftrightarrow 1+A=4 \Leftrightarrow A=3 .
$$

Now let $x=100$ and solve for t :

$$
100=\frac{200}{1+3 e^{-0.8 t}} \Leftrightarrow 3 e^{-0.8 t}=1 \Leftrightarrow e^{0.8 t}=3 \Leftrightarrow t=\frac{\ln 3}{0.8} \simeq 1.37
$$

So it will take about 1.37 seconds for another 50 grams of KNO_{3} to dissolve.
(b) [4 marks] What is the maximum amount of salt that will ever dissolve in the methanol?
Solution: find limit of x as $t \rightarrow \infty$:

$$
\lim _{t \rightarrow \infty} \frac{200}{1+3 e^{-0.8 t}}=\frac{200}{1+0}=200
$$

Alternate Calculations: if you didn't remember the logistic equation.

$$
\begin{aligned}
& \frac{d x}{d t}=0.8 x\left(1-\frac{x}{200}\right) \Rightarrow \int\left(\frac{200}{x(200-x)}\right) d x=\int 0.8 d t \\
\Rightarrow & \int\left(\frac{1}{x}+\frac{1}{200-x}\right) d x=0.8 t+C \Rightarrow \ln |x|-\ln |200-x|=0.8 t+C \\
\Rightarrow & \ln \left|\frac{x}{200-x}\right|=0.8 t+C \Rightarrow \frac{x}{200-x}= \pm B e^{0.8 t} \Rightarrow \frac{200-x}{x}=A e^{-0.8 t} \\
\Rightarrow & \frac{200}{x}=1+A e^{-0.8 t} \Rightarrow x=\frac{200}{1+A e^{-0.8 t}} ; \text { with } A= \pm B^{-1}= \pm e^{-C}
\end{aligned}
$$

Now proceed as above.
6. [10 marks] If x is the amount of salt disolved in a saline solution of volume V, at time t, in a large mixing tank, then

$$
\frac{d x}{d t}+\frac{r_{0}}{V} x=r_{i} c_{i}
$$

where c_{i} is the concentration of salt in a solution entering the mixing tank at rate r_{i}, and r_{0} is the rate at which the well-mixed solution is leaving the tank.
A 200 -liter tank initially contains 100 liters of brine (i.e. saline solution) containing 25 kg of salt. Brine containing 1 kg of salt per liter enters the tank at the rate of 5 liters per sec, and the well-mixed brine in the tank flows out at the rate of 3 liters per sec. How much salt will the tank contain when it is full of brine?

Solution: $V=100+\left(r_{i}-r_{o}\right) t=100+2 t$. The integrating factor of the differential equation

$$
\frac{d x}{d t}+\frac{3}{100+2 t} x=5
$$

is

$$
\rho=e^{\int \frac{3}{100+2 t} d t}=e^{3 \ln (100+2 t) / 2}=(100+2 t)^{3 / 2}
$$

and so

$$
x=\frac{\int 5 \rho d t}{\rho}=\frac{(100+2 t)^{5 / 2}+C}{(100+2 t)^{3 / 2}}=(100+2 t)+\frac{C}{(100+2 t)^{3 / 2}} .
$$

Use the initial condition $t=0, x=25$ to find C :

$$
25=100+\frac{C}{100^{3 / 2}} \Leftrightarrow C=-75000
$$

Thus

$$
x=(100+2 t)-\frac{75000}{(100+2 t)^{3 / 2}}
$$

The tank is full when $V=200 \Leftrightarrow 100+2 t=200 \Leftrightarrow t=50$. At $t=50$,

$$
x=(100+100)-\frac{75000}{(100+100)^{3 / 2}}=200-\frac{75}{2 \sqrt{2}} \simeq 173.5
$$

So when the tank is full of brine it contains about 173.5 kilograms of salt.
7. [8 marks] A bomb is dropped (initial speed zero) from a helicopter hovering at a height 800 m . A projectile is fired from a gun located on the ground 800 m from the point directly beneath the helicopter. The projectile is supposed to intercept the bomb at a height of exactly 600 m . If the projectile is fired at the same instant that the bomb is dropped, what should be its initial speed and angle of inclination? (Use $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.)

Solution:

The parametric equations of the projectile's trajectory are

$$
x=-800+\left(v_{0} \cos \alpha\right) t ; y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2} .
$$

At $t=\frac{20}{\sqrt{g}}$,

$$
\begin{aligned}
(x, y)=(0,600) & \Rightarrow\left\{\begin{array}{l}
-800+\frac{20 v_{0} \cos \alpha}{\sqrt{g}}=0 \\
-200+\frac{20 v_{0} \sin \alpha}{\sqrt{g}}=600
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
v_{0} \cos \alpha=40 \sqrt{g} \\
v_{0} \sin \alpha=40 \sqrt{g}
\end{array}\right. \\
& \Rightarrow \tan \alpha=1 \Rightarrow \alpha=45^{\circ}
\end{aligned}
$$

So the projectile should be aimed at an angle of 45° from the horizontal with an initial speed of $177.1 \mathrm{~m} / \mathrm{sec}$.
NB: if the projectile is fired from the right side of the helicopter, then $\alpha=135^{\circ}$ counter clockwise from the positive x-axis.

