University of Toronto

Faculty of Applied Science and Engineering

 Solutions to Final Examination, June 2017DURATION: 2 and $1 / 2$ hrs
First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS
MAT187H1F - Calculus II
Examiner: D. Burbulla

Exam Type: A.
Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

General Comments:

1. Only Questions 3 and 5 had a failing average; although Question 3 was basically a repeat of a similar question on Test 2, and Question 5-which is not hard-was done in class.
2. Question 4 was a very easy polar area question, but many students made it unnecessarily complicated.
3. Question 6 was almost identical to a question on the June 2016 exam; it should have been aced.

Breakdown of Results: 40 students wrote this exam. The marks ranged from 12% to 91%, and the average was 59.75%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	5.0%
A	12.5%	$80-89 \%$	7.5%
B	17.5%	$70-79 \%$	17.5%
C	15.0%	$60-69 \%$	15.0%
D	37.5%	$50-59 \%$	37.5%
F	17.5%	$40-49 \%$	10.0%
		$30-39 \%$	2.5%
		$20-29 \%$	0.0%
		$10-19 \%$	5.0%
		$0-9 \%$	0.0%

1. [30 marks; avg: 22.8] Consider the curve in space with vector equation

$$
\mathbf{r}(t)=\left\langle\cos t+t \sin t, \sin t-t \cos t, \frac{\sqrt{3} t^{2}}{2}\right\rangle
$$

for $t \geq 0$.

Average this page: 11.6/13.
(a) [9 marks] Calculate and simplify the following:
(i) [3 marks] $\mathbf{r}^{\prime}(t)$

Solution:

$$
\mathbf{r}^{\prime}(t)=\langle-\sin t+\sin t+t \cos t, \cos t-\cos t+t \sin t, \sqrt{3} t\rangle=\langle t \cos t, t \sin t, \sqrt{3} t\rangle
$$

(ii) [3 marks] $\mathbf{r}^{\prime \prime}(t)$

Solution: differentiate your answer from part (a).

$$
\mathbf{r}^{\prime \prime}(t)=\langle\cos t-t \sin t, \sin t+t \cos t, \sqrt{3}\rangle
$$

(iii) [3 marks] $\mathbf{r}^{\prime \prime \prime}(t)$

Solution: differentiate your answer from part (b).

$$
\mathbf{r}^{\prime \prime \prime}(t)=\langle-\sin t-\sin t-t \cos t, \cos t+\cos t-t \sin t, 0\rangle=\langle-2 \sin t-t \cos t, 2 \cos t-t \sin t, 0\rangle
$$

(b) [4 marks] What is the length of the curve for $0 \leq t \leq 3$?

Solution: use the length formula.

$$
L=\int_{0}^{3}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{3} \sqrt{t^{2}+3 t^{2}} d t=\int_{0}^{3} 2 t d t=\left[t^{2}\right]_{0}^{3}=9
$$

(c) [8 marks; avg: 6.2] Find $\mathbf{T}(\mathbf{t}), \mathbf{N}(t)$ and $\mathbf{B}(t)$, the unit tangent, normal and binormal vectors, respectively, of the curve.

Solution: for $t>0$.

$$
\begin{aligned}
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} & =\frac{\langle t \cos t, t \sin t, \sqrt{3} t\rangle}{|\langle t \cos t, t \sin t, \sqrt{3} t\rangle|} \\
& =\frac{\langle t \cos t, t \sin t, \sqrt{3} t\rangle}{2 t} \\
& =\frac{1}{2}\langle\cos t, \sin t, \sqrt{3}\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} & =\frac{\frac{1}{2}\langle-\sin t, \cos t, 0\rangle}{\frac{1}{2}|\langle-\sin t, \cos t, 0\rangle|} \\
& =\langle-\sin t, \cos t, 0\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t) & =\frac{1}{2}\langle\cos t, \sin t, \sqrt{3}\rangle \times\langle-\sin t, \cos t, 0\rangle \\
& =\frac{1}{2}\langle-\sqrt{3} \cos t,-\sqrt{3} \sin t, 1\rangle
\end{aligned}
$$

(d) [9 marks; avg: 5.0] Show that for this curve $\tau=\sqrt{3} \kappa$ for all $t>0$, where κ is the curvature of the curve and τ is its torsion.

Solution: the shortest way, making use of your previous calculations, would be

$$
\kappa=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{1 / 2}{2 t}=\frac{1}{4 t}
$$

and

$$
\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}=-\frac{\mathbf{B}^{\prime}(t) \cdot \mathbf{N}(\mathbf{t})}{\left|\mathbf{r}^{\prime}(t)\right|}=-\frac{1}{2 t}\left\langle\frac{\sqrt{3}}{2} \sin t,-\frac{\sqrt{3}}{2} \cos t, 0\right\rangle \cdot\langle-\sin t, \cos t, 0\rangle=\frac{\sqrt{3}}{4 t}
$$

so, YES, $\tau=\sqrt{3} \kappa$.
OR: looking at the formulas for κ and τ supplied on the Formula Sheet, you can see that both can be calculated in terms of $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$. Using the calculations from part (a) we have

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t) & =\langle t \cos t, t \sin t, \sqrt{3} t\rangle \times\langle\cos t-t \sin t, \sin t+t \cos t, \sqrt{3}\rangle \\
& =\left\langle-\sqrt{3} t^{2} \cos t,-\sqrt{3} t^{2} \sin t, t^{2}\right\rangle
\end{aligned}
$$

and

$$
\left|\mathbf{r}^{\prime}(t)\right|=2 t
$$

Thus

$$
\begin{aligned}
\kappa & =\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}} \\
& =\frac{2 t^{2}}{8 t^{3}} \\
& =\frac{1}{4 t}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\tau & =\frac{\left(\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right) \cdot \mathbf{r}^{\prime \prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|^{2}} \\
& =\frac{\left\langle-\sqrt{3} t^{2} \cos t,-\sqrt{3} t^{2} \sin t, t^{2}\right\rangle \cdot\langle-2 \sin t-t \cos t, 2 \cos t-t \sin t, 0\rangle}{\left|\left\langle-\sqrt{3} t^{2} \cos t,-\sqrt{3} t^{2} \sin t, t^{2}\right\rangle\right|^{2}} \\
& =\frac{2 \sqrt{3} t^{2} \cos t \sin t+\sqrt{3} t^{3} \cos ^{2} t-2 \sqrt{3} t^{2} \cos t \sin t+\sqrt{3} t^{3} \sin ^{2} t+0}{\left(2 t^{2}\right)^{2}} \\
& =\frac{\sqrt{3} t^{3}}{4 t^{4}} \\
& =\frac{\sqrt{3}}{4 t}
\end{aligned}
$$

Consequently,

$$
\tau=\sqrt{3} \kappa
$$

2. [10 marks; avg: 5.8]
3. (a) [5 marks] Find the length of the polar curve with polar equation $r=\theta^{2}$, for $0 \leq \theta \leq \sqrt{21}$.

Solution: use the formula for the length of a polar curve.

$$
\begin{aligned}
L=\int_{0}^{\sqrt{21}} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta & =\int_{0}^{\sqrt{21}} \sqrt{\theta^{4}+4 \theta^{2}} d \theta \\
& =\int_{0}^{\sqrt{21}} \theta \sqrt{\theta^{2}+4} d \theta \\
\left(\text { let } u=\theta^{2}+4\right) & =\frac{1}{2} \int_{4}^{25} \sqrt{u} d u \\
& =\left[\frac{u^{3 / 2}}{3}\right]_{4}^{25} \\
& =\frac{125}{3}-\frac{8}{3}=39
\end{aligned}
$$

2.(b) [5 marks] Find the interval of convergence of the power series $f(x)=\sum_{k=1}^{\infty} \frac{(x+1)^{k}}{3^{k} \sqrt{k}}$.

Solution: the radius of convergence is

$$
R=\lim _{k \rightarrow \infty}\left|\frac{3^{k+1} \sqrt{k+1}}{3^{k} \sqrt{k}}\right|=3 \lim _{k \rightarrow \infty} \sqrt{\frac{k+1}{k}}=3 \cdot 1=3 .
$$

Solution: the open interval of convergence is $(-1-3,-1+3)=(-4,2)$. Now check to see if the power series converges at the end points:
at $x=-4, \quad \sum_{k=1}^{\infty} \frac{(x+1)^{k}}{3^{k} \sqrt{k}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}$, which converges by the alternating series test;
at $x=2, \sum_{k=1}^{\infty} \frac{(x+1)^{k}}{3^{k} \sqrt{k}}=\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$, which is a p-series with $p=1 / 2 \leq 1$, so it diverges.
Answer: the interval of convergence is $[-4,2)$.
3. [20 marks; avg: 9.9] For this question let P be a positive function of t that satisfies the differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{L}\right)
$$

for some positive constants k and L.
Average this page: 5.3/10
(a) [5 marks] Without solving the differential equation, find its equilibrium solution, and explain why it is a stable equilibrium.

Solution: k, L and P are all positive, so

$$
\frac{d P}{d t}=0 \Rightarrow 1-\frac{P}{L}=0 \Rightarrow P=L .
$$

This equilibrium value is stable since

$$
P<L \Rightarrow \frac{P}{L}<1 \Rightarrow 1-\frac{P}{L}>0 \Rightarrow \frac{d P}{d t}>0, \text { so } P \text { will increase back towards L; }
$$

and

$$
P>L \Rightarrow \frac{P}{L}>1 \Rightarrow 1-\frac{P}{L}<0 \Rightarrow \frac{d P}{d t}<0, \text { so } P \text { will decrease back towards L. }
$$

(b) [5 marks] For which value of P does P grow fastest?

Solution: rewrite $\frac{d P}{d t}$ as

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{L}\right)=k P-k\left(\frac{P^{2}}{L}\right)
$$

and differentiate implicitly:

$$
\frac{d^{2} P}{d t^{2}}=k \frac{d P}{d t}-k \frac{2 P}{L} \frac{d P}{d t}=k \frac{d P}{d t}\left(1-\frac{2 P}{L}\right) .
$$

Then

$$
\frac{d^{2} P}{d t^{2}}=0 \Rightarrow 1-\frac{2 P}{L}=0 \Rightarrow P=\frac{L}{2} .
$$

So $\frac{d P}{d t}$ is maximized at

$$
P=\frac{L}{2} .
$$

Aside: this value of P is also the P-coordinate of the inflection point on the graph of P.
(c) $\left[10\right.$ marks; avg: 4.6] Suppose that $k=0.3$, and that when $t=0$ the initial value of P is $P_{0}=200$ and its rate of increase is $P_{0}^{\prime}=48$. Solve for P as a function of t and then sketch the graph of P, indicating inflection points and asymptotes, if any.

Solution: use the initial conditions to find L :

$$
\begin{aligned}
P_{0}=200, P_{0}^{\prime}=48 & \Rightarrow 48=0.3 \times 200\left(1-\frac{200}{L}\right) \\
& \Rightarrow \frac{48}{60}=1-\frac{200}{L} \\
& \Rightarrow \frac{200}{L}=\frac{1}{5} \\
& \Rightarrow \frac{L}{200}=5 \\
& \Rightarrow L=1000
\end{aligned}
$$

Now the initial value problem is

$$
\frac{d P}{d t}=0.3 P\left(1-\frac{P}{1000}\right) ; P_{0}=200
$$

This is a logistic differential equation, for which the solution (if you memorized it) is

$$
P=\frac{1000}{1+A e^{-0.3 t}}
$$

To find A let $t=0$ and $P=200$:

$$
200=\frac{1000}{1+A} \Rightarrow A=4
$$

Or, separate variables:

$$
\begin{aligned}
& \int \frac{1000 d P}{P(1000-P)}=\int 0.3 d t \\
& \Rightarrow \int\left(\frac{1}{P}+\frac{1}{1000-P}\right) d P=0.3 t+C \\
& \Rightarrow \ln P-\ln (1000-P)=0.3 t+C \\
& \Rightarrow \ln \frac{P}{1000-P}=0.3 t+C \\
& \Rightarrow \quad \frac{P}{1000-P}=e^{C} e^{0.3 t} \\
& \Rightarrow \quad \frac{1000-P}{P}=A e^{-0.3 t} \\
& \Rightarrow \quad \frac{1000}{P}=1+A e^{-0.3 t} \\
& \Rightarrow \quad P=\frac{1000}{1+A e^{-0.3 t}}
\end{aligned}
$$

The graph of P is in green and the horizontal asymptote at $L=1000$ is in red. Your graph should have an inflection point at $(10 / 3 \ln 4,500) \approx(4.6,500)$ and the initial value $(0,200)$.
4. [10 marks; avg: 5.5] Find the area of the region within the curve with polar equation $r^{2}=4 \sin (2 \theta)$ but outside the circle with polar equation $r=\sqrt{2}$.
(See the curves to the right, which you should label.)
Solution: in the graphs to the right, the circle $r_{1}=\sqrt{2}$ is in red, and the curve with equation $r_{2}^{2}=4 \sin (2 \theta)$ is in blue. The loop in the first quadrant is $r_{2}>0$;
 the loop in the third quadrant is $r_{2}<0$.

Intersection points: set $r_{1}=r_{2}$:

$$
2=4 \sin (2 \theta) \Rightarrow \sin (2 \theta)=\frac{1}{2} \Rightarrow 2 \theta=\frac{\pi}{6} \text { or } \frac{5 \pi}{6} \Rightarrow \theta=\frac{\pi}{12} \text { or } \frac{5 \pi}{12} .
$$

Calculation of Area: by symmetry,

$$
\begin{aligned}
A=2\left(\frac{1}{2} \int_{\pi / 12}^{5 \pi / 12}\left(r_{2}^{2}-r_{1}^{2}\right) d \theta\right) & =\int_{\pi / 12}^{5 \pi / 12}(4 \sin (2 \theta)-2) d \theta \\
& =[-2 \cos (2 \theta)-2 \theta]_{\pi / 12}^{5 \pi / 12} \\
& =-2\left(-\frac{\sqrt{3}}{2}\right)-\frac{5 \pi}{6}+2\left(\frac{\sqrt{3}}{2}\right)+\frac{\pi}{6} \\
& =2 \sqrt{3}-\frac{2 \pi}{3}
\end{aligned}
$$

5. [10 marks; avg: 3.6] For this question i is the 'imaginary' square root of -1 . That is, $i=\sqrt{-1}$ and $i^{2}=-1$.
(a) [6 marks] Using appropriate power series, derive Euler's formula: $e^{i \theta}=\cos \theta+i \sin \theta$.

Solution: as done in class. Let $x=i \theta$ in the power series of e^{x} :

$$
\begin{aligned}
e^{i \theta}=\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} & =1+i \theta+i^{2} \frac{\theta^{2}}{2!}+i^{3} \frac{\theta^{3}}{3!}+i^{4} \frac{\theta^{4}}{4!}+i^{5} \frac{\theta^{5}}{5!}+\cdots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}+\cdots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right) \\
& =\cos \theta+i \sin \theta
\end{aligned}
$$

(b) [2 marks] What is the value of $e^{i \pi / 2}$?

Solution: use Euler's formula.

$$
e^{i \pi / 2}=\cos (\pi / 2)+i \sin (\pi / 2)=0+i=i
$$

(c) [2 marks] What is the value of i^{i} ?

Solution: the interesting thing here is that i^{i} turns out to be real:

$$
\begin{aligned}
i=e^{i \pi / 2} & \Rightarrow i^{i}=\left(e^{i \pi / 2}\right)^{i} \\
& \Rightarrow i^{i}=e^{i^{2} \pi / 2} \\
& \Rightarrow i^{i}=e^{-\pi / 2} \approx 0.21
\end{aligned}
$$

6. [20 marks; avg: 12.2] A 1-kg block hangs on a spring with constant $k=100 \mathrm{~N} / \mathrm{m}$. Let y be the displacement from equilibrium of the spring at time t, measured in seconds. The block is lifted 12 m above its equilibrium position and let go.
(a) [8 marks; avg: 5.0$]$ Solve the corresponding initial value problem

$$
\frac{d^{2} y}{d t^{2}}+100 y=0 ; y_{0}=12, y_{0}^{\prime}=0
$$

for y as a function of t and graph the solution, for $0 \leq t \leq \pi$, indicating its amplitude and period.

Solution: find the roots of the auxiliary quadratic.

$$
r^{2}+100=0 \Rightarrow r^{2}=-100 \Rightarrow r= \pm 10 i,
$$

so

$$
y=A \cos (10 t)+B \sin (10 t) \text { and } y^{\prime}=-10 A \sin (10 t)+10 B \cos (10 t) .
$$

But $y_{0}=12 \Rightarrow A=12$, and $y_{0}^{\prime}=0 \Rightarrow B=0$, thus

$$
y=12 \cos (10 t),
$$

which represents a sinusoidal wave with amplitude 12 and period $\pi / 5$. The graph is below:

Your graph should show five complete cycles, have amplitude 12, and pass through $(0,12)$.
(b) [12 marks; avg: 7.1] Now suppose the block-spring system is in a surrounding medium with a damping coefficient of $c=12 \mathrm{~kg} / \mathrm{s}$. Solve the corresponding initial value problem

$$
\frac{d^{2} y}{d t^{2}}+12 \frac{d y}{d t}+100 y=0 ; y_{0}=12, y_{0}^{\prime}=0
$$

and express your answer as a product of three terms: a constant, an exponential function, and a single trigonometric function-sine or cosine.
Solution: now

$$
r^{2}+12 r+100=0 \Rightarrow r=\frac{-12 \pm \sqrt{144-400}}{2}=-6 \pm 8 i
$$

so

$$
y=A e^{-6 t} \cos (8 t)+B e^{-6 t} \sin (8 t)
$$

and

$$
y^{\prime}=-6 A e^{-6 t} \cos (8 t)-8 A e^{-6 t} \sin (8 t)-6 B e^{-6 t} \sin (8 t)+8 B e^{-6 t} \cos (8 t)
$$

Use the initial conditions to find that $A=12$ and

$$
-6 A+8 B=0 \Leftrightarrow B=9 .
$$

Then

$$
\begin{aligned}
y & =12 e^{-6 t} \cos (8 t)+9 e^{-6 t} \sin (8 t) \\
& =15 e^{-6 t}\left(\frac{12}{15} \cos (8 t)+\frac{9}{15} \sin (8 t)\right) \\
& =15 e^{-6 t} \sin (8 t+\alpha), \text { with } \sin \alpha=\frac{4}{5}, \cos \alpha=\frac{3}{5}, \alpha=\tan ^{-1} \frac{4}{3}, \\
\text { or } y & =15 e^{-6 t} \cos (8 t-\beta), \text { with } \cos \beta=\frac{4}{5}, \sin \beta=\frac{3}{5}, \beta=\tan ^{-1} \frac{3}{4} .
\end{aligned}
$$

This page is for rough work; it will only be marked if you direct the marker to this page.

This page is for rough work; it will only be marked if you direct the marker to this page.

This page is for rough work; it will only be marked if you direct the marker to this page.

