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General Comments:

1. Considering that more than 80% of this exam was completely computational, the results on this exam

were surprisingly low. Eg. 23 of 54 students could not solve the quadratic equation in 6(c) correctly!

And many students used incorrect formulas for area and length, even though they were supplied!

2. Interestingly, the only question with a failing average, Question 3, was based on a WeBWorK home-

work problem. Also: in this question, very few students knew what ‘stable equilibrium’ meant.

3. Every page was done perfectly at least once, except for pages 3, 4 and 9.

Breakdown of Results: 54 students wrote this exam. The marks ranged from 14% to 89%, and the

average was 56.61%. Some statistics on grade distributions are in the table on the left, and a histogram of

the marks (by decade) is on the right.

Grade % Decade %

90-100% 0.0%

A 5.6% 80-89% 5.6%

B 9.2% 70-79% 9.2%

C 27.8% 60-69% 27.8%

D 31.5% 50-59% 31.5%

F 25.9% 40-49% 16.7%

30-39% 7.4%

20-29% 0.0%

10-19% 1.8%

0-9% 0.0%



1. [10 marks: avg: 7.15]

The position of a particle at time t is given by r(t) = 〈cos t, sin t, ln(sec t)〉, for 0 ≤ t < π/2.

(a) [6 marks] Find the velocity, speed and acceleration of the particle at time t.

Solution: let v(t) be the velocity of the particle at time t. NB. sec t > 0 for 0 ≤ t < π/2.

v(t) =
d r(t)

dt
=
〈
− sin t, cos t,

sec t tan t

sec t

〉
= 〈− sin t, cos t, tan t〉;

speed = |v(t)| =
√

(− sin t)2 + cos2 t + tan2 t =
√

1 + tan2 t = sec t;

acceleration =
dv(t)

dt
= 〈− cos t,− sin t, sec2 t〉.

(b) [4 marks] What is the total distance travelled by the particle for 0 ≤ t ≤ π/4?

Solution: distance travelled is the integral of speed.∫ π/4

0
|v(t)| dt =

∫ π/4

0
sec t dt = [ln(sec t + tan t)]π/4

0 = ln(
√

2 + 1).
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2. [10 marks: avg: 5.02]

2.(a) [4 marks] Find the length of the logarithmic spiral with polar equation r = e2θ, for 0 ≤ θ ≤ π.

Solution:

L =
∫ π

0

√
r2 +

(
dr

dθ

)2

dθ =
∫ π

0

√
e4θ + 4 e4θ dθ =

√
5
∫ π

0
e2θ dθ =

√
5
[
e2θ

2

]π

0

=
√

5
2

(e2π − 1)

2.(b) [6 marks; 2 for each part.] Consider the power series f(x) =
∞∑

k=0

(x− 2)k

2k
√

k + 1
.

(i) What is the radius of convergence of f(x)?

Solution: the radius of convergence is

R = lim
k→∞

∣∣∣∣2k+1
√

k + 2
2k
√

k + 1

∣∣∣∣ = 2 lim
k→∞

√
k + 2
k + 1

= 2 · 1 = 2.

(ii) What is the interval of convergence of f(x)?

Solution: the open interval of convergence is (2 − 2, 2 + 2) = (0, 4). Now check to see if the

power series converges at the end points:

at x = 0,
∞∑

k=0

(x− 2)k

2k
√

k + 1
=

∞∑
k=0

(−1)k

√
k + 1

, which converges by the alternating series test;

at x = 4,
∞∑

k=0

(x− 2)k

2k
√

k + 1
=

∞∑
k=0

1√
k + 1

, which diverges by the integral test.

Answer: the interval of convergence is [0, 4).

(iii) What is the value of f (8)(2)?

Solution: we have

f (8)(2)
8!

=
1

28
√

8 + 1
⇔ f (8)(2) =

8!
3 · 28

=
105
2

= 52.5
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3. [20 marks; avg: 6.89] For this question let P be a positive function of t that satisfies the differential

equation
dP

dt
= c P ln

6000
P

,

for some positive constant c.

(a) [5 marks] Without solving the differential equation, find its equilibrium solution, and explain

why it is a stable equilibrium.

Solution: c and P are both positive, so

dP

dt
= 0 ⇒ ln

6000
P

= 0 ⇒ 6000
P

= 1 ⇒ P = 6000.

This equilibrium value is stable since

P < 6000 ⇒ 6000
P

> 1 ⇒ ln
6000
P

> 0 ⇒ dP

dt
> 0, so P will increase back toward 6000;

and

P > 6000 ⇒ 6000
P

< 1 ⇒ ln
6000
P

< 0 ⇒ dP

dt
< 0, so P will decrease back toward 6000.

(b) [5 marks] For which value of P does P grow fastest?

Solution: differentiate implicitly and use the product rule. Note that for some calculations it

is more convenient to use

ln
6000
P

= ln 6000− lnP.

Then
d2P

dt2
= c

dP

dt
ln

6000
P

+ cP

(
− 1

P

)
dP

dt
= c

dP

dt

(
ln

6000
P

− 1
)

;

d2P

dt2
= 0 ⇒ ln

6000
P

= 1 ⇒ 6000
P

= e ⇒ P =
6000

e
.

So
dP

dt
is maximized at

P =
6000

e
.

Aside: this value of P is also the P -coordinate of the inflection point on the graph of P.
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(c) [10 marks] Given that c = 0.2 and 0 < P < 6000, solve for P as a function of t if P = 300 when

t = 0; and then sketch the graph of P, indicating inflection points and asymptotes, if any.

Solution: separate variables.

dP

dt
=

P

5
ln

6000
P

⇒
∫

dP

P (ln 6000− lnP )
=

1
5

∫
dt

(let u = ln 6000− lnP ) ⇒ −
∫

du

u
=

t

5
+ C

⇒ − lnu =
t

5
+ C, since u > 0,

⇒ − ln(ln 6000− lnP ) =
t

5
+ C

To find C let t = 0 and P = 300:

C = − ln(ln 6000− ln 300) = − ln(ln 20).

Then

− ln(ln 6000− lnP ) =
t

5
− ln(ln 20)

⇒ ln(ln 6000− lnP ) = − t

5
+ ln(ln 20)

⇒ ln
(

ln
6000
P

)
= − t

5
+ ln(ln 20)

⇒ ln
6000
P

= e−t/5 ln 20 = ln 20(e−t/5)

⇒ 6000
P

= 20(e−t/5)

⇒ P =
6000

20(e−t/5)
= 300 · 201−e−t/5

︸ ︷︷ ︸
either one will do

Your graph should have a horizontal asymptote at P = 6000, an inflection point at (5 ln(ln 20), 6000/e)

and an initial value (0, 300). NB: the vertical scale on the graph above is in 1000’s.
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4. [20 marks; avg: 12.2] Let f(θ) = 3 sin θ + 2 cos2 θ.

(a) [10 marks] Fill out the short table of values below, and then plot the polar graph of r = f(θ).

Solution:

θ r = f(θ) (x, y)

0 2 (2, 0)

π/2 3 (0, 3)

π 2 (−2, 0)

7π/6 0 (0, 0)

3π/2 −3 (0, 3)

11π/6 0 (0, 0)

2π 2 (2, 0)
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(b) [10 marks] Find the area of the region within the polar curve with equation r = f(θ) but outside

the circle with polar equation r = 3 sin θ. (4 marks for setting things up; 6 for your calculations.)

Solution: this is not a one-step problem. You need at least three calculations to get the area.

The graphs of r = f(θ), red, and the circle

r = 3 sin θ, green, are to the left. We need

the area outside the green curve but inside

the red curve. The easiest way is to calcu-

late all the area within the red curve from

θ = −π/6 to θ = π/2, double it, and then

subtract the area within the green circle.

(The inner red loop is irrelevant, since it is

entirely within the green circle.)

Setting things up:

A = 2

(
1
2

∫ π/2

−π/6
(f(θ))2 dθ

)
−
(

3
2

)2

π =
∫ π/2

−π/6
(3 sin θ + 2 cos2 θ)2 dθ − 9π

4

=
∫ π/2

−π/6
(9 sin2 θ + 12 cos2 θ sin θ + 4 cos4 θ) dθ − 9π

4

Calculations: use double angle and reduction formulas, and u = cos θ substitution, as needed.∫ π/2

−π/6
9 sin2 θ dθ =

9
2

∫ π/2

−π/6
(1−cos(2θ)) dθ =

9
2

[
θ − sin(2θ)

2

]π/2

−π/6

=
9π

4
+

3π

4
− 9

√
3

8
= 3π− 9

√
3

8
;

∫ π/2

−π/6
12 cos2 θ sin θ dθ = −12

∫ 0

√
3/2

u2 du = 12
∫ √

3/2

0
u2 du = 4

[
u3
]√3/2

0
=

3
√

3
2

;

∫ π/2

−π/6
4 cos4 θ dθ =

[
cos3 θ sin θ

]π/2

−π/6
+ 3

∫ π/2

−π/6
cos2 θ dθ =

3
√

3
16

+
3
2

∫ π/2

−π/6
(1 + cos(2θ)) dθ

=
3
√

3
16

+
3
2

[
θ +

sin(2θ)
2

]π/2

−π/6

=
3
√

3
16

+
3π

4
+

π

4
+

3
√

3
8

=
9
√

3
16

+ π.

So, at last,

A =

(
3π − 9

√
3

8
+

3
√

3
2

+
9
√

3
16

+ π

)
− 9π

4
=

15
√

3
16

+
7π

4
.
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5. [20 marks; avg: 13.76] Consider the curve in space with vector equation r(t) = 〈13 sin(2t), 12 cos(2t), 5 cos(2t)〉.

(a) [10 marks] Find the curvature, κ, of the curve.

Solution: one way is first to find the unit tangent vector, T(t).

T(t) =
r′(t)
|r′(t)|

=
〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉
|〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉|

=
〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉√

262 cos2(2t) + 242 sin2(2t) + 102 sin2(2t)

=
〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉√

262 cos2(2t) + 262 sin2(2t)

=
1
26
〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉

=
〈

cos(2t),−12
13

sin(2t),− 5
13

sin(2t)
〉

⇒ κ =
|T′(t)|
|r′(t)|

=
1
26

∣∣∣∣〈−2 sin(2t),−24
13

cos(2t),−10
13

cos(2t)
〉∣∣∣∣

=
1
26

√
4 sin2(2t) +

(
24
13

)2

cos2(2t) +
(

10
13

)2

cos2(2t)

=
1
26

√
4 sin2(2t) + 4 cos2(2t) =

2
26

=
1
13

Alternate Solution: first find an arc length parametrization.

s =
∫ t

0
|r′(u)| du =

∫ t

0
26 du = 26t ⇒ t =

s

26

⇒ r(s) =
〈
13 sin

( s

13

)
, 12 cos

( s

13

)
, 5 cos

( s

13

)〉
⇒ T(s) = r′(s) =

〈
cos
( s

13

)
,−12

13
sin
( s

13

)
,− 5

13
sin
( s

13

)〉
⇒ dT

ds
=
〈
− 1

13
sin
( s

13

)
,− 12

132
cos
( s

13

)
,− 5

132
cos
( s

13

)〉

⇒ κ =
∣∣∣∣dTds

∣∣∣∣ =
√

1
132

sin2
( s

13

)
+

122

134
cos2

( s

13

)
+

52

134
cos2

( s

13

)
= · · · = 1

13

Or use:

κ =
|r′ × r′′|
|r′|3

=
|〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉 × 〈−52 sin(2t),−48 cos(2t),−20 cos(2t)〉|

|〈26 cos(2t),−24 sin(2t),−10 sin(2t)〉|3

=
|〈0, 520,−1248〉|

263
=
|〈0, 5,−12〉|

132
=

13
132

=
1
13
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(b) [6 marks] Find N(t) and B(t), the unit normal and binormal vectors, respectively, of the curve.

Solution: let N(t) and B(t) be the unit normal and binormal vectors, respectively. Then

N(t) =
T′(t)
|T′(t)|

=

〈
−2 sin(2t),−24

13 cos(2t),−10
13 cos(2t)

〉∣∣〈−2 sin(2t),−24
13 cos(2t),−10

13 cos(2t)
〉∣∣

=
1
2

〈
−2 sin(2t),−24

13
cos(2t),−10

13
cos(2t)

〉
=

〈
− sin(2t),−12

13
cos(2t),− 5

13
cos(2t)

〉

B(t) = T(t)×N(t)

=
〈

cos(2t),−12
13

sin(2t),− 5
13

sin(2t)
〉
×
〈
− sin(2t),−12

13
cos(2t),− 5

13
cos(2t)

〉
=

〈
60
169

sin 2t cos 2t− 60
169

sin 2t cos 2t,
5
13

sin2 2t +
5
13

cos2 2t,−12
13

cos2 2t− 12
13

sin2 2t

〉
=

〈
0,

5
13

,−12
13

〉

(c) [4 marks] Describe the curve. The more specific you can be the better.

Solution: the curve is

• in the plane with equation 5y = 12z, since B(t) is constant,

• with constant curvature κ = 1/13; so it is probably

• a circle

• with radius r = 13.

This can be confirmed:

|r(t)| =
√

132 sin2(2t) + 122 cos2(2t) + 52 cos2(2t) =
√

132 sin2(2t) + 132 cos2(2t) = 13.

So the curve is indeed a circle with centre (0, 0, 0), radius 13, in the plane with equation 5y = 12z.
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6. [20 marks; avg: 11.59] A 5-kg block hangs on a spring with constant k = 20 N/m. Let y be the

displacement from equilibrium of the spring at time t, measured in seconds. The block is lifted 4 m

above its equilibrium position and let go.

(a) [4 marks] Assuming no resistance or external forcing, explain briefly why the the motion of the

block is described by the initial value problem: 5
d2y

dt2
+ 20 y = 0; y0 = 4, y′0 = 0.

Solution: let y be the position of the block at time t, where y = 0 is the equilibrium position

of the spring. We have

F = −ky ⇒ ma = −ky ⇒ 5
d2y

dt2
= −20y ⇒ 5

d2y

dt2
+ 20 y = 0;

and the initial conditions are y0 = 4, y′0 = 0, since the block is just let go—no initial velocity.

(b) [6 marks] Solve the initial value problem from part (a) and graph the solution, for 0 ≤ t ≤ 2π,

indicating its amplitude and period.

Solution:

5r2 + 20 = 0 ⇒ r2 = −4 ⇒ r = ±2i,

so

y = A cos(2t) + B sin(2t) and y′ = −2A sin(2t) + 2B cos(2t).

But y0 = 4 ⇒ A = 4, and y′0 = 0 ⇒ B = 0, thus

y = 4 cos(2t),

which represents a sinusoidal wave with amplitude 4 and period π. The graph is below:
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(c) [10 marks] Now suppose the block-spring system is in a surrounding medium with a damping

coefficient of c = 12 kg/s. Solve the corresponding initial value problem

5
d2y

dt2
+ 12

dy

dt
+ 20 y = 0; y0 = 4, y′0 = 0

and express your answer as a product of three terms: a constant, an exponential function, and

a single trigonometric function—sine or cosine.

Solution: now

5r2 + 12r + 20 = 0 ⇒ r =
−12±

√
144− 400
10

= −6
5
± 8

5
i,

so

y = Ae−6t/5 cos
(

8t

5

)
+ Be−6t/5 sin

(
8t

5

)
and

y′ = −6A

5
e−6t/5 cos

(
8t

5

)
− 8A

5
e−6t/5 sin

(
8t

5

)
− 6B

5
e−6t/5 sin

(
8t

5

)
+

8B

5
e−6t/5 cos

(
8t

5

)
.

Use the initial conditions to find that A = 4 and

−6A

5
+

8B

5
= 0 ⇔ B = 3.

Then

y = 4 e−6t/5 cos
(

8t

5

)
+ 3 e−6t/5 sin

(
8t

5

)
= 5 e−6t/5

(
4
5

cos
(

8t

5

)
+

3
5

sin
(

8t

5

))
= 5 e−6t/5 sin

(
8t

5
+ α

)
, with sinα =

4
5
, cos α =

3
5
, α = tan−1 4

3
,

or y = 5 e−6t/5 cos
(

8t

5
− β

)
, with cos β =

4
5
, sinβ =

3
5
, β = tan−1 3

4
.
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