University of Toronto

Faculty of Applied Science and Engineering
Final Examination, June 2015
Duration: 2 and $1 / 2$ hrs
First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS Solutions to MAT187H1F - Calculus II

Examiner: D. Burbulla

This exam consists of 8 questions. Each question is worth 10 marks.
General Comments:

1. In Question 8, about ten students thought $\sqrt{a^{2}+b^{2}}=a+b$. And in Question 7(b), very few students included the absolute value sign in the length of $\mathbf{T}^{\prime}(t)$. Some students thought $1 /(a+b)=1 / a+1 / b$.
2. Questions 2,7 and 8 had a top mark of only 9 out of 10 ; all the other questions were done perfectly at least once. Generally speaking, the calculations in Question 7 and 8 were done very poorly! They are not as difficult - or as long - as some of you made them out to be.
3. Considering I told you there would be a logistic growth question on the exam, the results on Question 1 were very disappointing.
4. In Question 7(b) many students forgot the chain rule, or thought $\cos u^{2}=\cos ^{2} u$.

Breakdown of Results: 87 students wrote this exam. The marks ranged from 26.25% to 83.75%, and the average was 56.44%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	0.0%
A	2.3%	$80-89 \%$	2.3%
B	12.6%	$70-79 \%$	12.6%
C	27.6%	$60-69 \%$	27.6%
D	29.9%	$50-59 \%$	29.9%
F	27.6%	$40-49 \%$	18.4%
		$30-39 \%$	6.9%
		$20-29 \%$	2.3%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

PART I : Answer all of the following short-answer questions by putting your answers in the blanks. No explanation is necessary, but part marks are possible if you show your work and your answer is wrong.

1. [10 marks; avg: 5.72] Consider the initial value problem for $t \geq 0$.

$$
\text { DE: } \frac{d P}{d t}=0.1 P\left(1-\frac{P}{400}\right), \quad \text { IC: } P_{0}=50
$$

(a) [2 marks] The stable equilibrium solution to the DE is

$$
P=
$$

\qquad
(b) [2 marks] $\lim _{t \rightarrow \infty} P=$ \qquad (same as part (a))
(c) [2 marks] The solution to the initial value problem is $P=$
$\frac{400}{1+7 e^{-t / 10}}$

$$
P=\frac{400}{1+A e^{-t / 10}} ; \quad P_{0}=\frac{400}{1+A e^{0}} \Leftrightarrow 1+A=8 \Leftrightarrow A=7 .
$$

(d) [2 marks] The graph of P has one inflection point at

$$
(t, P)=
$$

\qquad

$$
200=\frac{400}{1+7 e^{-t / 10}} \Leftrightarrow 1+7 e^{-t / 10}=2 \Leftrightarrow 7=e^{t / 10}
$$

(e) [2 marks] How long will it take until $P=100$?
$t \approx$ \qquad

$$
100=\frac{400}{1+7 e^{-t / 10}} \Leftrightarrow 1+7 e^{-t / 10}=4 \Leftrightarrow \frac{7}{3}=e^{t / 10} \Leftrightarrow \frac{t}{10}=\ln \left(\frac{7}{3}\right) .
$$

2. [10 marks; avg: 5.09] Let $f(x)=\sum_{k=0}^{\infty} \frac{1}{k+1}\left(\frac{x^{k+2}}{2^{k}}\right)$
(a) [2 marks] The first four terms of this series are

$$
x^{2}+\frac{x^{3}}{4}+\frac{x^{4}}{12}+\frac{x^{5}}{32}
$$

(b) [2 marks] The radius of convergence of f is
(c) [2 marks] The interval of convergence of f is

$$
R=\frac{2}{\square}
$$

(d) [4 marks] $f(x)=$

$$
-2 x \ln \left(1-\frac{x}{2}\right)
$$

$$
\begin{aligned}
f(x) & =x \sum_{k=0}^{\infty} \frac{1}{k+1}\left(\frac{x^{k+1}}{2^{k}}\right) \\
& =x \sum_{k=0}^{\infty} \int \frac{x^{k}}{2^{k}} d x \\
& =x \int\left(\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}}\right) d x \\
& =x \int \frac{1}{1-x / 2} d x \\
& =x(-2 \ln (1-x / 2)) \\
& =-2 x \ln (1-x / 2)
\end{aligned}
$$

Or use the series for $\ln (1-x)$ supplied on the formula sheet, but it's not completely obvious:

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{1}{k+1}\left(\frac{x^{k+2}}{2^{k}}\right) & =x^{2}+\frac{x^{3}}{4}+\frac{x^{4}}{12}+\frac{x^{5}}{32}+\cdots \\
& =x\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{12}+\frac{x^{4}}{32}+\cdots\right) \\
& =2 x\left(\frac{x}{2}+\frac{1}{2} \frac{x^{2}}{4}+\frac{1}{3} \frac{x^{3}}{8}+\frac{1}{4} \frac{x^{4}}{2^{4}}+\cdots\right) \\
& =2 x\left(-\ln \left(1-\frac{x}{2}\right)\right) \\
& =-2 x \ln (1-x / 2)
\end{aligned}
$$

PART II : Present complete solutions to the following questions in the space provided.
3. [10 marks; avg: 6.34] Consider the logarithmic spiral with polar equation $r=e^{\theta}$.
(a) [4 marks] What is the length of the spiral for $0 \leq \theta \leq \pi$?

Solution:

$$
L=\int_{0}^{\pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{\pi} \sqrt{e^{2 \theta}+e^{2 \theta}} d \theta=\int_{0}^{\pi} \sqrt{2} e^{\theta} d \theta=\left[\sqrt{2} e^{\theta}\right]_{0}^{\pi}=\sqrt{2}\left(e^{\pi}-1\right)
$$

(b) [6 marks] Find all the critical ${ }^{1}$ points on the spiral for $0 \leq \theta \leq 2 \pi$.

Solution: parametric equations of the spiral are $x=r \cos \theta$ and $y=r \sin \theta$. So

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{e^{\theta} \sin \theta+e^{\theta} \cos \theta}{e^{\theta} \cos \theta-e^{\theta} \sin \theta}=\frac{\sin \theta+\cos \theta}{\cos \theta-\sin \theta}
$$

For horizontal tangents

$$
\sin \theta+\cos \theta=0 \Leftrightarrow \tan \theta=-1 \Leftrightarrow \theta=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4} .
$$

For vertical tangents

$$
\cos \theta-\sin \theta=0 \Leftrightarrow \tan \theta=1 \Leftrightarrow \theta=\frac{\pi}{4} \text { or } \frac{5 \pi}{4} .
$$

So the four critical points, in Cartesian coordinates, are

$$
(x, y)=\left(\frac{e^{\pi / 4}}{\sqrt{2}}, \frac{e^{\pi / 4}}{\sqrt{2}}\right),\left(-\frac{e^{3 \pi / 4}}{\sqrt{2}}, \frac{e^{3 \pi / 4}}{\sqrt{2}}\right),\left(-\frac{e^{5 \pi / 4}}{\sqrt{2}},-\frac{e^{5 \pi / 4}}{\sqrt{2}}\right),\left(\frac{e^{7 \pi / 4}}{\sqrt{2}},-\frac{e^{7 \pi / 4}}{\sqrt{2}}\right) .
$$

I will also accept polar coordinates r and θ :

$$
(r, \theta)=\left(e^{\pi / 4}, \frac{\pi}{4}\right),\left(e^{3 \pi / 4}, \frac{3 \pi}{4}\right),\left(e^{5 \pi / 4}, \frac{5 \pi}{4}\right),\left(e^{7 \pi / 4}, \frac{7 \pi}{4}\right)
$$

But just giving θ is not enough.

[^0]4. [10 marks; avg: 5.17] Plot the limaçon with polar equation $r=1-2 \sin \theta$ and then find the area of the region that is inside the outer loop but outside the inner loop.

Solution:

$$
r=0 \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6} \text { or } \frac{5 \pi}{6} .
$$

For the inner loop, with area A_{i},

$$
\frac{\pi}{6} \leq \theta \leq \frac{5 \pi}{6}
$$

for the outer loop, with area A_{o},

$$
\frac{5 \pi}{6} \leq \theta \leq \frac{13 \pi}{6}
$$

Then

$$
A_{o}=\frac{1}{2} \int_{5 \pi / 6}^{13 \pi / 6}(1-2 \sin \theta)^{2} d \theta \text { or } A_{o}=\int_{5 \pi / 6}^{3 \pi / 2}(1-2 \sin \theta)^{2} d \theta \text {, by symmetry; }
$$

and

$$
A_{i}=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(1-2 \sin \theta)^{2} d \theta \text { or } A_{i}=\int_{\pi / 6}^{\pi / 2}(1-2 \sin \theta)^{2} d \theta, \text { by symmetry. }
$$

For each integral we can use

$$
\int(1-2 \sin \theta)^{2} d \theta=\int\left(1-4 \sin \theta+4 \sin ^{2} \theta\right) d \theta=\int(3-4 \sin \theta-2 \cos (2 \theta)) d \theta=3 \theta+4 \cos \theta-\sin (2 \theta) .
$$

Thus

$$
\begin{gathered}
A_{o}=\int_{5 \pi / 6}^{3 \pi / 2}(1-2 \sin \theta)^{2} d \theta=[3 \theta+4 \cos \theta-\sin (2 \theta)]_{5 \pi / 6}^{3 \pi / 2}=2 \pi+\frac{3 \sqrt{3}}{2} \\
A_{i}=\int_{\pi / 6}^{\pi / 2}(1-2 \sin \theta)^{2} d \theta=[3 \theta+4 \cos \theta-\sin (2 \theta)]_{\pi / 6}^{\pi / 2}=\pi-\frac{3 \sqrt{3}}{2}
\end{gathered}
$$

So the area of the region that is inside the outer loop but outside the inner loop is

$$
A=A_{o}-A_{i}=\pi+3 \sqrt{3} .
$$

Alternate Solution: you can also calculate the integral for $0 \leq \theta \leq 2 \pi$, and then subtract the area of the inner loop, but you have to subtract the area of the inner loop twice.

$$
\frac{1}{2} \int_{0}^{2 \pi}(1-2 \sin \theta)^{2} d \theta-2 A_{i}=3 \pi-2\left(\pi-\frac{3 \sqrt{3}}{2}\right)=\pi+3 \sqrt{3} .
$$

5. [10 marks; avg: 6.69] A small rocket is fired from a launch pad 10 m above the ground with an initial velocity of $\mathbf{v}_{0}=\langle 300,400,500\rangle$, in m / s. A cross wind blowing to the north produces an acceleration of the rocket of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. Assume the positive x-axis points east, the positive y-axis points north, and the positive z-axis points up. Answer the following questions. ${ }^{2}$ (Ignore air resistance; use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.)
(a) [4 marks] What are the velocity and position vectors for the rocket at time $t \geq 0$?

Solution: take $\mathbf{r}_{0}=\langle 0,0,10\rangle, \mathbf{a}=\langle 0,2.5,-9.8\rangle$. Then

$$
\begin{gathered}
\mathbf{v}=\int \mathbf{a} d t=\langle 0,2.5 t,-9.8 t\rangle+\mathbf{v}_{0}=\langle 300,400+2.5 t, 500-9.8 t\rangle \\
\mathbf{r}=\int \mathbf{v} d t=\left\langle 300 t, 400 t+1.25 t^{2}, 500 t-4.9 t^{2}\right\rangle+\mathbf{r}_{0}=\left\langle 300 t, 400 t+1.25 t^{2}, 10+500 t-4.9 t^{2}\right\rangle .
\end{gathered}
$$

(b) [4 marks] How long (to the nearest second) is the rocket in the air, and where on the ground (to the nearest meter) does it land?

Solution: we have $x=300 t, y=400 t+1.25 t^{2}, z=10+500 t-4.9 t^{2}$. The rocket lands when

$$
z=0 \Rightarrow 4.9 t^{2}-500 t-10=0 \Rightarrow t=102.0608124 \ldots
$$

So the rocket is in the air for 102 seconds and lands at $x=30,618, y=53,845$, where we rounded off after substituting the decimal value of t. (But values of $x=30,600$ and $y=53,805$ will also be accepted.)
(c) [2 marks] What is the maximum height (to the nearest meter) of the rocket during its flight?

Solution: find the critical point of z with respect to t. Since $z=10+500 t-4.9 t^{2}$,

$$
\frac{d z}{d t}=500-9.8 t=0 \Leftrightarrow t=51.02040816 \ldots
$$

and the maximum height of the rocket is $z=12,765$ to the nearest meter.

Note: since $z_{0}=10$, this is not a symmetric trip, and so the maximum value of z does not occur at half of the time taken in part (b).

[^1]6. [10 marks; avg: 7.8] Consider the curve with vector equation $\mathbf{r}(t)=\left\langle 3 \cos t, 3 \sin t,-2 t^{3 / 2}\right\rangle$, for $t \geq 0$.
(a) [5 marks] Calculate both $\mathbf{r}^{\prime}(t)$ and $\left|\mathbf{r}^{\prime}(t)\right|$.

Solution:

$$
\mathbf{r}^{\prime}(t)=\langle-3 \sin t, 3 \cos t,-3 \sqrt{t}\rangle
$$

and

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{9 \sin ^{2} t+9 \cos ^{2} t+9 t}=3 \sqrt{1+t} .
$$

(b) [5 marks] Find an arc length parameterization of the curve.

Solution:

$$
s=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{0}^{t} 3 \sqrt{1+u} d u=\left[2(1+u)^{3 / 2}\right]_{0}^{t}=2(1+t)^{3 / 2}-2=2\left((1+t)^{3 / 2}-1\right) ;
$$

consequently

$$
(1+t)^{3 / 2}-1=\frac{s}{2} \Rightarrow(1+t)^{3 / 2}=1+\frac{s}{2} \Rightarrow 1+t=\left(1+\frac{s}{2}\right)^{2 / 3} \Rightarrow t=\left(1+\frac{s}{2}\right)^{2 / 3}-1
$$

and an arc length parameterization of the curve is

$$
\mathbf{r}(s)=\left\langle 3 \cos \left(\left(1+\frac{s}{2}\right)^{2 / 3}-1\right), 3 \sin \left(\left(1+\frac{s}{2}\right)^{2 / 3}-1\right),-2\left(\left(1+\frac{s}{2}\right)^{2 / 3}-1\right)^{3 / 2}\right\rangle
$$

7. [10 marks; avg: 3.62] The Fresnel integrals $C(t)=\int_{0}^{t} \cos u^{2} d u, S(t)=\int_{0}^{t} \sin u^{2} d u$ arise in the theory of optics.
(a) [4 marks] What are the Maclaurin series, in sigma notation, for $C(t)$ and $S(t)$?

Solution: use the series for sine and cosine, and then integrate.

$$
\begin{gathered}
C(t)=\int_{0}^{t}\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(u^{2}\right)^{2 k}}{(2 k)!}\right) d u=\sum_{k=0}^{\infty}(-1)^{k}\left(\int_{0}^{t} \frac{u^{4 k}}{(2 k)!} d u\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{4 k+1}}{(4 k+1)(2 k)!} \\
S(t)=\int_{0}^{t}\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(u^{2}\right)^{2 k+1}}{(2 k+1)!}\right) d u=\sum_{k=0}^{\infty}(-1)^{k}\left(\int_{0}^{t} \frac{u^{4 k+2}}{(2 k+1)!} d u\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{4 k+3}}{(4 k+3)(2 k+1)!}
\end{gathered}
$$

(b) [6 marks] The Euler spiral, shown to the right, is the curve with vector equation $\mathbf{r}(t)=\langle C(t), S(t)\rangle$. For this curve, find
(i) the unit tangent vector $\mathbf{T}(t)$,
(ii) the unit normal vector $\mathbf{N}(t)$,
(iii) and the curvature κ.

Illustrate your results, for $t=\sqrt{\pi / 2}$, on the graph to the

right. NB: you do not need part (a) to do part (b).

Solution:

(i) $\mathbf{r}^{\prime}(t)=\left\langle\cos t^{2}, \sin t^{2}\right\rangle$, which is already a unit vector. So $\mathbf{T}(t)=\left\langle\cos t^{2}, \sin t^{2}\right\rangle$.
(ii) $\mathbf{T}^{\prime}(t)=\left\langle-2 t \sin t^{2}, 2 t \cos t^{2}\right\rangle$ and $\left|\mathbf{T}^{\prime}(t)\right|=\sqrt{4 t^{2} \sin ^{2} t^{2}+4 t^{2} \cos ^{2} t^{2}}=\sqrt{4 t^{2}}=2|t|$, so

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}= \begin{cases}\left\langle-\sin t^{2}, \cos t^{2}\right\rangle & \text { if } t>0 \\ \left\langle\sin t^{2},-\cos t^{2}\right\rangle & \text { if } t<0\end{cases}
$$

(iii)

$$
\kappa=\left|\frac{\mathbf{T}^{\prime}(t)}{\mathbf{r}^{\prime}(t)}\right|=\frac{2|t|}{1}=2|t| .
$$

At $t=\sqrt{\pi / 2}$ there is a vertical tangent line, since $d x / d t=0$, and

$$
\mathbf{T}\left(\sqrt{\frac{\pi}{2}}\right)=\langle 0,1\rangle, \mathbf{N}=\left(\sqrt{\frac{\pi}{2}}\right)=\langle-1,0\rangle, \kappa=\sqrt{2 \pi} .
$$

8. [10 marks; avg: 4.7] Let $\mathbf{r}(t)=\left\langle t, 1-t, t^{2}\right\rangle$ be the vector equation of a curve in \mathbb{R}^{3}.
(a) [8 marks] Find $\mathbf{T}(t), \mathbf{N}(t)$ and $\mathbf{B}(t)$, the unit tangent, normal and binormal vectors, respectively.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,-1,2 t\rangle$ and $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{2+4 t^{2}}$, so

$$
\mathbf{T}(t)=\left\langle\frac{1}{\sqrt{2+4 t^{2}}}, \frac{-1}{\sqrt{2+4 t^{2}}}, \frac{2 t}{\sqrt{2+4 t^{2}}}\right\rangle
$$

Slightly more complicated calculations give

$$
\mathbf{T}^{\prime}(t)=\left\langle\frac{-4 t}{\left(2+4 t^{2}\right)^{3 / 2}}, \frac{4 t}{\left(2+4 t^{2}\right)^{3 / 2}}, \frac{4}{\left(2+4 t^{2}\right)^{3 / 2}}\right\rangle,\left|\mathbf{T}^{\prime}(t)\right|=\frac{4 \sqrt{1+2 t^{2}}}{\left(2+4 t^{2}\right)^{3 / 2}},
$$

so

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\left\langle\frac{-t}{\sqrt{1+2 t^{2}}}, \frac{t}{\sqrt{1+2 t^{2}}}, \frac{1}{\sqrt{1+2 t^{2}}}\right\rangle .
$$

Then

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)=\left\langle\frac{-1-2 t^{2}}{\sqrt{2}\left(1+2 t^{2}\right)}, \frac{-1-2 t^{2}}{\sqrt{2}\left(1+2 t^{2}\right)}, \frac{t-t}{\sqrt{2}\left(1+2 t^{2}\right)}\right\rangle=\left\langle-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right\rangle .
$$

(b) [2 marks] Answer one and only one of the following two questions:
(i) What can you conclude about the osculating planes of the curve?
(ii) What is the maximum curvature of the curve?

Solution (i) : since $\mathbf{B}(t)$ is a constant vector, all the osculating planes of the curve must be parallel. In fact, all osculating planes to the curve are the same, and have equation

$$
x+y=1
$$

since the curve $\mathbf{r}(t)=\left\langle t, 1-t, t^{2}\right\rangle$ is entirely contained within this plane.
Solution (ii) : the curvature is

$$
\kappa=\left|\frac{\mathbf{T}^{\prime}(t)}{\mathbf{r}^{\prime}(t)}\right|=\frac{1}{\left(1+2 t^{2}\right)^{3 / 2}},
$$

which has maximum value $\kappa=1$ at $t=0$.

This page is for rough work; it will only be marked if you direct the marker to this page.

This page is for rough work; it will only be marked if you direct the marker to this page.

This page is for rough work; it will only be marked if you direct the marker to this page.

[^0]: ${ }^{1} \mathrm{~A}$ critical point is a point where the slope of the graph is zero or undefined.

[^1]: ${ }^{2}$ This problem was based on a suggested homework problem.

