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Comments:

1. The range on each question was 0 to perfect; Questions 2 and 8 had failing averages.

2. In Question 2 many students were totally befuddled by all the logarithms!

3. Question 8 is actually short and straightforward if you use series.

4. Question 7 and the integral in Question 4 were the only real challenging parts of
the exam.

Breakdown of Results: 52 students wrote this exam. The marks ranged from 33% to
80%, and the average was 59.7%. Some statistics on grade distributions are in the table
on the left, and a histogram of the marks (by decade) is on the right. (For the purposes
of calculating the final grades, I added 2 marks to everybody’s exam score to raise the
average on the exam to 61.7%, the same as last year. The overall average in the course
ended up at 66.4%.)

Grade % Decade %
90-100% 0.0%

A 1.9% 80-89% 1.9%
B 11.6% 70-79% 11.6%
C 44.2% 60-69% 44.2%
D 25.0% 50-59% 25.0%
F 17.3% 40-49% 9.6%

30-39% 7.7%
20-29% 0.0%
10-19% 0.0%
0-9% 0.0%



1. [avg: 10.0/12] Find all the critical points of the function f(x, y) = 6xy2 − 2x3 + 3y4,
and determine if they are maximum points, minimum points, or saddle points.

Solution: Let z = f(x, y). Then

∂z

∂x
= 6y2 − 6x2 and

∂z

∂y
= 12xy + 12y3.

Critical points:

6y2 − 6x2 = 0
12xy + 12y3 = 0

}
⇒
{

x2 = y2

y = 0 or x = −y2

If y = 0 then x = 0; if x = −y2 then y4 = y2. So the three critical points are

(x, y) = (0, 0), (x, y) = (−1, 1) or (x, y) = (−1,−1).

Second Derivative Test:

∂2z

∂x2
= −12x,

∂2z

∂y2
= 12x + 36y2,

∂2z

∂x∂y
= 12y

and
∆ = −12x(12x + 36y2)− 144y2.

At both (x, y) = (−1,±1),

∆ = 144 > 0 and
∂2z

∂x2
= 12 > 0,

so f has a minimum value (of z = −1) at both (x, y) = (−1,±1).

At (x, y) = (0, 0),

1. z = 0, and

2. ∆ = 0, so the second derivative test is inconclusive.

Bonus: Consider z = f(x, 0) = −2x3:

x < 0 ⇒ z > 0; x > 0 ⇒ z < 0.

So z = 0 can be neither a maximum nor a minimum value of f at (x, y) = (0, 0);
thus f has a saddle point at (x, y) = (0, 0).



2. [avg: 2.7/10] Consider an alternative to the logistic equation called the Gompertz
equation, which models popluation growth by the differential equation

dP

dt
= cP ln

(
K

P

)
,

where P is the population at time t, c and K are both positive constants, and P > 0.
Solve for P as a function of t if P = P0 < K at t = 0. What is lim

t→∞
P?

Solution: separate variables. Use ln

(
K

P

)
= ln K − ln P , to make the integration

easier. ∫
dP

P (ln K − ln P )
=

∫
c dt ⇒ − ln | ln K − ln P | = c t + C,

where we used the substitution u = ln K − ln P to integrate the integral on the left.
To find C use the initial condition t = 0, P = P0:

C = − ln | ln K − ln P0| = − ln(ln K − ln P0),

since P0 < K. Then

ln | ln K − ln P | = −c t + ln(ln K − ln P0) ⇒
∣∣∣∣ln K

P

∣∣∣∣ = e−ct ln
K

P0

⇒ ln
K

P
= e−ct ln

K

P0

, since P = P0 < K, if t = 0

⇒ K

P
= ee−ct ln(K/P0) =

(
K

P0

)e−ct

⇒ P

K
=

(
P0

K

)e−ct

⇒ P = K

(
P0

K

)e−ct

Finally,

lim
t→∞

P = K lim
t→∞

(
P0

K

)e−ct

= K ·
(

P0

K

)0

= K · 1 = K.



3. [avg: 10.4/12] Find the general solution for each of the following differential equations:

(a) [7 marks]
dy

dx
+ 2 y tan x = tan3 x

Solution: use the method of the integrating factor.

µ = e
R

2 tan x dx = e2 ln | sec x| = | sec x|2 = sec2 x.

Then:

y =
1

µ

∫
µ tan3 x dx = cos2 x

∫
sec2 x tan3 x dx.

This integral can be evaluated by letting u = tan x. Then du = sec2 x dx and∫
sec2 x tan3 x dx =

∫
u3 du =

u4

4
+ C =

tan4 x

4
+ C.

Thus

y = cos2 x

∫
sec2 x tan3 x dx = cos2 x

(
tan4 x

4
+ C

)
=

1

4
sin2 x tan2 x+C cos2 x.

(b) [5 marks]
d2y

dx2
+ 6

dy

dx
+ 9y = 0

Solution: solve the auxiliary quadratic equation:

r2 + 6r + 9 = 0 ⇒ r = −3,

repeated. So

y = Ae−3x + B x e−3x.



4. [avg: 5.9/10] Suppose x =
√

t + ln t and y =
√

t − ln t, for 5 ≤ t ≤ 12, are the
parametric equations of a curve in the xy-plane. Find the length of the curve.

Solution:
dx

dt
=

1

2
√

t
+

1

t
=

√
t + 2

2t
;

dy

dt
=

1

2
√

t
− 1

t
=

√
t− 2

2t
.

Then

L =

∫ 12

5

√
(x′(t))2 + (y′(t))2 dt =

∫ 12

5

√(√
t + 2

2t

)2

+

(√
t− 2

2t

)2

dt

=

∫ 12

5

√
2t + 8

4t2
dt

=
1√
2

∫ 12

5

√
t + 4

t
dt

(let t + 4 = u2) =
1√
2

∫ 4

3

2u2

u2 − 4
du

=
√

2

∫ 4

3

(
1 +

4

u2 − 4

)
du

=
√

2

∫ 4

3

(
1 +

1

u− 2
− 1

u + 2

)
du

=
√

2 [u + ln(u− 2)− ln(u + 2)]43

=
√

2(1 + ln 5− ln 3)

=
√

2 +
√

2 ln

(
5

3

)



5. [avg: 7.8/12]

(a) [6 marks] Find the interval of convergence of the power series
∞∑

k=1

(−1)k+1 xk

k 4k
.

Solution: we have ak =
(−1)k+1

k 4k
, so

R = lim
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣ = lim
k→∞

(k + 1) 4k+1

k 4k
= 4 lim

k→∞

k + 1

k
= 4× 1 = 4,

and the open interval of convergence is (−R,R) = (−4, 4). At the endpoint
x = 4 the series becomes

∞∑
k=1

(−1)k+1

k

which converges by the alternating series test, since obviously the sequence 1/k
decreases to zero as k →∞. But at x = −4 the series becomes

−
∞∑

k=1

1

k

which diverges because it is the negative of the harmonic series. So the interval
of convergence is (−4, 4].

(b) [6 marks] Use series to find an approximation of

∫ 1/2

0

x2 dx

(1 + x4)3/2
correct to

within 10−5.

Solution: use the binomial series, and integrate term by term:∫ 1/2

0

x2 dx

(1 + x4)3/2
=

∫ 1/2

0

x2(1 + x4)−3/2 dx

=

∫ 1/2

0

x2

(
1− 3x4

2
+

15x8

8
− 35x12

16
+ · · ·

)
dx

=

∫ 1/2

0

(
x2 − 3x6

2
+

15x10

8
− 35x14

16
+ · · ·

)
dx

=

[
x3

3
− 3x7

14
+

15x11

88
− 7x15

48
+ · · ·

]1/2

0

=
1

24
− 3

1792
+

15

180224︸ ︷︷ ︸− 7

(48)(215)
+ · · ·

≈ 0.040075789, correct to within
7

(48)(215)
≈ 4.45× 10−6 < 10−5,

by the alternating series test remainder term.



6. [avg: 6.7/10] A projectile is to be fired from the top of a 100-m cliff at a target 1 km
from the base of the cliff. The projectile is fired with initial speed v0 = 200 m/sec,
at an angle α to the horizontal. Find α. (Ignore air resistance; use g = 9.8 m/s2.)

Solution:

(1000, 0)

y

�
��

rr
v0

α

r(x, y)

r(0, 0)

(0, 100)

Let the position of the projectile at time
t be (x, y) with the position at t = 0 set
at (0, 100). We have

v0 = 200, x0 = 0, y0 = 100

and

x = 200 cos(α) t, y = 100+200 sin(α) t−4.9 t2.

The trajectory of the projectile is to pass through the point (x, y) = (1000, 0) whence

200 cos(α) t = 1000 and 100 + 200 sin(α) t− 4.9 t2 = 0.

Substitute t = 5 sec α into the quadratic for t and solve for tan α:

4.9(5 sec α)2 − 1000 sin α sec α− 100 = 0

⇔ 122.5 sec2 α− 1000 tan α− 100 = 0

⇔ 122.5(1 + tan2 α)− 1000 tan α− 100 = 0

⇔ 122.5 tan2 α− 1000 tan α + 22.5 = 0

⇔ tan α =
1000±

√
10002 − 11025

245
⇔ tan α = 0.02256235986 or 8.140702946

⇒ α ≈ 1.3◦ or 83◦

Either choice of α will do.



7. [avg: 5.6/12] Plot the two curves with polar equations

r1 = sin θ and r2 = cos(2θ),

and find the area of the region that is inside the curve r2 but outside the curve r1.

Solution: at the intersection,

r1 = r2 ⇒ sin θ = cos(2θ) ⇒ sin θ = 1− 2 sin2 θ ⇒ 2 sin2 θ + sin θ − 1 = 0

⇒ (2 sin θ − 1)(sin θ + 1) = 0 ⇒ sin θ =
1

2
or sin θ = −1.

The solutions are θ = π/6, 5π/6 or θ = −π/2, only the first of which is really needed.

In the diagram to the left, the red
curve is the polar graph of the circle

r1 = sin θ

and the green curve is the polar graph
of the four-leaved rose

r2 = cos(2θ).

The region outslde the red circle but
inside the green curve consists of two
complete petals of the four-leaved rose
and two parts of the left and right
petals of the four-leaved rose. The to-
tal area is given by

A = 2

(
1

2

∫ π/4

−π/4

r2
2 dθ

)
︸ ︷︷ ︸+ 2

(
1

2

∫ π/6

0

(
r2
2 − r2

1

)
dθ

)
︸ ︷︷ ︸

two complete petals bits in two petals above x-axis, outside circle

= 2

∫ π/4

0

cos2(2θ) dθ +

∫ π/6

0

(
cos2(2θ)− sin2 θ

)
dθ

=

∫ π/4

0

(1 + cos(4θ)) dθ +

∫ π/6

0

(
1 + cos(4θ)

2
− 1− cos(2θ)

2

)
dθ

=

∫ π/4

0

(1 + cos(4θ)) dθ +

∫ π/6

0

(
cos(4θ)

2
+

cos(2θ)

2

)
dθ

=

[
θ +

sin(4θ)

4

]π/4

0

+

[
sin(4θ)

8
+

sin(2θ)

4

]π/6

0

=
π

4
+

√
3

16
+

√
3

8

=
π

4
+

3
√

3

16



8. [avg: 3.7/10] What is the 14th Maclaurin polynomial1 of f(x) = e−x2
arctan(x4)?

Solution: use the series for ez with z = −x2 and the series for arctan z with z = x4,
multiply the series out, and then collect all the terms of degree 14 or less:

e−x2

arctan(x4)

=

(
1− x2 +

x4

2!
− x6

3!
+

x8

4!
− x10

5!
+ · · ·

)(
x4 − x12

3
+ · · ·

)
= x4 − x12

3
− x6 +

x14

3
+

x8

2
− x16

6
− x10

6
+

x18

18
+

x12

24
− x20

72
− x14

120
+ ·

= x4 − x6 +
x8

2
− x10

6
− 7x12

24
+

13x14

40
+ · · ·

So 14th Maclaurin polynomial of f(x) is

P14(x) = x4 − x6 +
x8

2
− x10

6
− 7x12

24
+

13x14

40
.

1same as the 14th degree Maclaurin polynomial



9. [avg: 7.0/12] Consider the curve with vector equation

r = (t− sin t) i + (1− cos t) j + 2
√

5 cos

(
t

2

)
k

for 0 ≤ t ≤ 2π.

(a) [6 marks] Calculate both
dr

dt
and

∥∥∥∥dr

dt

∥∥∥∥.
Solution:

dr

dt
= (1− cos t) i + sin t j−

√
5 sin

(
t

2

)
k;

∥∥∥∥dr

dt

∥∥∥∥ =

√
(1− cos t)2 + sin2 t + 5 sin2

(
t

2

)

=

√
1− 2 cos t + cos2 t + sin2 t + 5 sin2

(
t

2

)

=

√
2− 2 cos t + 5 sin2

(
t

2

)

=

√
4 sin2

(
t

2

)
+ 5 sin2

(
t

2

)

=

√
9 sin2

(
t

2

)
= 3 sin

(
t

2

)
, since 0 ≤ t ≤ 2π ⇒ 0 ≤ t

2
≤ π ⇒ sin

(
t

2

)
≥ 0

(b) [6 marks] Find an arc length parameterization of the curve, with reference point
(π, 2, 0), for which t = π.

Solution: for 0 ≤ t ≤ 2π,

s =

∫ t

π

∥∥∥∥dr

du

∥∥∥∥ du =

∫ t

π

3 sin
(u

2

)
du =

[
−6 cos

(u

2

)]t
π

= −6 cos

(
t

2

)
.

Then t = 2 cos−1
(
−s

6

)
and an arc length parametrization of the curve is

r =
(
2 cos−1

(
−s

6

)
− sin

(
2 cos−1

(
−s

6

)))
i+
(
1− cos

(
2 cos−1

(
−s

6

)))
j−s

√
5

3
k.

Bonus: this can be simplified to

r =

(
2 cos−1

(
−s

6

)
+

s
√

36− s2

18

)
i +

(
2− s2

18

)
j− s

√
5

3
k,

for −6 ≤ s ≤ 6.


