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Grade % Decade %
90-100% 0.0%

A 16.4% 80-89% 16.4%
B 19.7% 70-79% 19.7%
C 21.3% 60-69% 21.3%
D 21.3% 50-59% 21.3%
F 21.3% 40-49% 18.0%

30-39% 3.3%
20-29% 0.0%
10-19% 0.0%
0-9% 0.0%



1. [15 marks; 5 for each part. Avg: 12.7] Find the general solution, y as a function of x,
to each of the following differential equations:

(a)
dy

dx
=

cos x

ey

Solution: separate variables.∫
ey dy =

∫
cos x dx ⇒ ey = sin x + C.

So
y = ln (sin x + C) .

(b)
dy

dx
− y

x
= x

Solution: use the method of the integrating factor.

µ = e−
R

dx
x = e− ln |x| =

1

|x|
⇒ µ =

1

x
or µ = −1

x
.

Taking the former:

y =
1

µ

∫
µ x dx = x

∫
1 dx = x(x + C) = x2 + Cx.

(c)
d2y

dx2
+ 6

dy

dx
+ 10y = 0

Solution:

r2 + 6r + 10 = 0 ⇒ r =
−6±

√
36− 40

2
= −3± i,

so

y = Ae−3x cos x + Be−3x sin x.



2. [12 marks; 6 for each part. Avg: 6.2] Find the following:

(a) the interval of convergence of the power series
∞∑

k=1

(x− 2)k

k(k + 1)
.

Solution: we have ak =
1

k(k + 1)
, so

R = lim
k→∞

∣∣∣∣ ak

ak+1

∣∣∣∣ = lim
k→∞

(k + 1)(k + 2)

k(k + 1)
= lim

k→∞

(k + 2

k
= 1,

and the open interval of convergence is (2−R, 2+R) = (1, 3). At the endpoints,
x = 1, 3 both series

∞∑
k=1

(±1)k

k(k + 1)

converge absolutely by comparison with the p-series

∞∑
k=1

1

k2
,

for which p = 2 > 1. Thus the interval of convergence is [1, 3].

(b) the first three non-zero terms in the Maclaurin series for ln

(
1 + x

1− x

)
.

Solution: ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x), so

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x)

= x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · −

(
−x− (−x)2

2
+

(−x)3

3
− (−x)4

4
+

(−x)5

5
− · · ·

)
= 2x +

2x3

3
+

2x5

5
− · · ·

Alternate Solution: let f(x) = ln

(
1 + x

1− x

)
. Then

f ′(x) =
(1− x)

(1 + x)

(1− x + 1 + x)

(1− x)2
=

2

1− x2
= 2 + 2x2 + 2x4 + · · · ;

so

f(x) =

∫
(2 + 2x2 + 2x4 + · · · ) dx = 2x +

2x3

3
+

2x5

5
+ · · ·



3. [15 marks. Avg: 10.3] Find the following:

(a) [8 marls]
dy

dx
and

d2y

dx2
at the point (x, y) = (π, π) if x = π + sin t, y = t + sin2 t.

Solution: (x, y) = (π, π) ⇒ t = π.

dy

dx
=

dy
dt
dx
dt

=
1 + 2 sin t cos t

cos t
= sec t + 2 sin t;

d2y

dx2
=

dy′

dt
dx
dt

=
sec t tan t + 2 cos t

cos t
.

So at the point (x, y) = (π, π), for which t = π, we have

dy

dx
= −1 and

d2y

dx2
= 2.

(b) [7 marks] the approximate value of

∫ 1/2

0

tan−1(x2) dx correct to within 10−5,

and explain how you know your answer is correct to within 10−5.

Solution:∫ 1/2

0

tan−1(x2) dx =

∫ 1/2

0

(
x2 − (x2)3

3
+

(x2)5

5
− · · ·

)
dx

=

∫ 1/2

0

(
x2 − x6

3
+

x10

5
− · · ·

)
dx

=

[
x3

3
− x7

21
+

x11

55
− · · ·

]1/2

0

=
1

24
− 1

2688
+

1

112640
− · · ·

≈ 0.041294642 . . .

correct to within
1

112640
= 0.000008877 · · · < 10−5,

by the alternating series remainder formula.



4. [12 marks. Avg: 6.2] Let

r = 1 + 2 cos(3θ),

which has polar graph shown to the right.
Find the area of the region which is inside
the three large loops but outside the three
small loops.

Solution: all the loops emanate from the origin.

r = 0 ⇔ 1+2 cos(3θ) = 0 ⇔ cos(3θ) = −1

2
⇔ 3θ = ±2π

3
+2nπ ⇔ θ = ±2π

9
+

2nπ

3
.

So the limits of the big loop with x > 0 are θ = ±2π/9, and the limits for the small
loop in the third quadrant are θ = 2π/9 and θ = 4π/9. Then the area within one
big loop is

A1 =
1

2

∫ 2π/9

−2π/9

(1 + 2 cos(3θ))2 dθ or

∫ 2π/9

0

(1 + 2 cos(3θ))2 dθ,

and the area within one small loop is

A2 =
1

2

∫ 4π/9

2π/9

(1 + 2 cos(3θ))2 dθ or

∫ 4π/9

π/3

(1 + 2 cos(3θ))2 dθ.

In each case, use

∫
(1 + 2 cos(3θ))2 dθ =

∫
(1+4 cos(3θ)+4 cos2(3θ)) dθ =

∫
(3+4 cos(3θ)+2 cos(6θ)) dθ = 3θ+

4

3
sin(3θ)+

1

3
sin(6θ)+C.

So the area within the big loops but outside the small loops is

A = 3A1−3A2 = 3

[
3θ +

4

3
sin(3θ) +

1

3
sin(6θ)

]2π/9

0

−3

[
3θ +

4

3
sin(3θ) +

1

3
sin(6θ)

]4π/9

π/3

= 3

(
2π

3
+

2
√

3

3
−
√

3

6

)
− 3

(
4π

3
− π − 2

√
3

3
+

√
3

6

)
= 3

√
3 + π.



5. [12 marks. Avg: 9.4] Find all the critical points of the function f(x, y) = x2y−6y2−3x2

and determine if they are maximum points, minimum points, or saddle points.

Solution: Let z = f(x, y). Then

∂z

∂x
= 2xy − 6x and

∂z

∂y
= x2 − 12y.

Critical points:

2xy − 6x = 0
x2 − 12y = 0

}
⇒
{

x = 0 or y = 3
x2 = 12y

So the three critical points are

(x, y) = (0, 0), (x, y) = (6, 3) or (x, y) = (−6, 3).

Second Derivative Test:

∂2z

∂x2
= 2y − 6,

∂2z

∂y2
= −12,

∂2z

∂x∂y
= 2x

and
∆ = 72− 24y − 4x2.

At the critical points (x, y) = (±6, 3),

∆ = −144 < 0

so f has a saddle point at both the critical points (x, y) = (±6, 3).

At the critical point (x, y) = (0, 0),

∆ = 72 > 0 and
∂2z

∂y2
= −12 < 0,

so there f has a maximum point at (0, 0, 0).



6. [10 marks. Avg: 6.8] Find two elevation angles that will enable a shell, fired from
ground level with a muzzle speed of 250 m/sec to hit a ground-level target 3 km
away. Note: to simplify calculations let g = 10 m/sec2.

Solution: Let α be the angle the initial velocity vector v0 makes with the x-axis.
We have v0 = ‖v0‖ = 250 and a = −10 j;v0 = 250 cos α i + 250 sin α j.

So

v =

∫
a dt = −10t j + v0 = 250 cos α i + (250 sin α− 10t) j

and, taking r0 = 0 i + 0 j,

r =

∫
v dt = 250 t cos α i + (250 t sin α− 5t2) j.

That is,
x = 250 t cos α and y = 250 t sin α− 5t2.

We want the trajectory to pass through the point (x, y) = (3000, 0), so

3000 = 250 t cos α, 0 = 250 t sin α− 5t2.

Thus t = 0 or t = 50 sin α, and so

3000 = 250(50 sin α) cos α ⇔ sin(2α) = 0.48.

Therefore
2α ≈ 28.68◦ or 151.32◦

whence
α ≈ 14.34◦ or 75.66◦.



7. [12 marks. Avg: 4.4] Let f(x) =
x2

(1 + x2)2
.

(a) [6 marks] Use the binomial series expansion for (1+x2)−2 to find the Maclaurin
series for f(x).

Solution: use the binomial series

(1 + z)α = 1 + αz +
α(α− 1)

2!
z2 +

α(α− 1)(α− 2)

3!
z3 + · · ·

with z = x2 and α = −2. Then

f(x) = x2(1 + x2)−2

= x2

(
1− 2x2 +

(−2)(−3)

2!
(x2)2 +

(−2)(−3)(−4)

3!
(x2)3 + ·

)
= x2

(
1− 2x2 + 3x4 − 4x6 + · · ·

)
= x2 − 2x4 + 3x6 − 4x8 + · · ·
= x2 − 2(x2)2 + 3(x2)3 − 4(x2)4 + · · ·

=
∞∑

n=1

(−1)n+1n (x2)n

(b) [6 marks] Find the exact value of
∞∑

n=1

(−1)n+1 n

9n
. Hint: use part (a).

Solution: we have

∞∑
n=1

(−1)n+1 n

9n
=

∞∑
n=1

(−1)n+1 n

(32)n
= f(1/3) =

(1/3)2

(1 + (1/3)2)2
= 0.09



8. [12 marks. Avg: 7.3] The vector equation of a cycloid is

r = (a t− a sin t) i + (a− a cos t) j.

for a > 0 and 0 ≤ t ≤ 2π.

(a) [6 marks] Calculate both
dr

dt
and

∥∥∥∥dr

dt

∥∥∥∥.
Solution:

dr

dt
= (a− a cost) i + a sin t j;

∥∥∥∥dr

dt

∥∥∥∥ =
√

(a− a cost)2 + a2 sin2 t

=
√

a2(1− 2 cos t + cos2 t) + a2 sin2 t

= a
√

2− 2 cos t

= a
√

4 sin2(t/2)

= 2a sin(t/2),

since 0 ≤ t ≤ 2π ⇒ 0 ≤ t/2 ≤ π ⇒ sin(t/2) ≥ 0.

(b) [6 marks] Find an arc length parametrization of the cycloid, with reference
point (0, 0), for which t = 0.

Solution:

s =

∫ t

0

∥∥∥∥dr

du

∥∥∥∥ du = [−4a cos(u/2)]t0 = 4a− 4a cos(t/2).

Then 0 ≤ s ≤ 8a and

cos(t/2) =
4a− s

4a
⇒ t = 2 cos−1

(
4a− s

4a

)
,

so an arc length parametrization of the curve is r =(
2a cos−1

(
4a− s

4a

)
− a sin

(
2 cos−1

(
4a− s

4a

)))
i+

(
a− a cos

(
2 cos−1

(
4a− s

4a

)))
j.


