University of Toronto
 FACULTY OF APPLIED SCIENCE AND ENGINEERING
 Solutions to FINAL EXAMINATION, JUNE, 2009
 First Year - CHE, CIV, IND, LME, MEC, MMS
 MAT187H1F - CALCULUS II
 Exam Type: A

Comments:

1. The only practical way to do the last question is to use the series for $e^{x}, \ln (1+x)$ and $\tan ^{-1} x$ and adjust them accordingly. Otherwise you have to do lots and lots of differentiation!
2. In Question 11 lots of students used the binomial series with $\alpha=1 / 2$, and so got a series in the denominator, which is hard to handle!
3. Question 12 is easy, if you separate variables correctly, but many students couldn't!

Alternate Solutions:

1. You could use the alternating series test for $7(\mathrm{a})$; or the comparison test for $7(\mathrm{c})$.
2. In $7(\mathrm{c})$, you could use the ratio test, but nobody who tried it could calculate the limit correctly! Correctly calculated, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3}{4}$.

Breakdown of Results: 92 registered students wrote this exam. The marks ranged from 28% to 97%, and the average was 65.4%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	5.4%
A	22.8%	$80-89 \%$	17.4%
B	19.6%	$70-79 \%$	19.6%
C	25.0%	$60-69 \%$	25.0%
D	14.1%	$50-59 \%$	14.1%
F	18.5%	$40-49 \%$	10.9%
		$30-39 \%$	5.4%
		$20-29 \%$	2.2%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

1. The position $x(t)$ of a particle at time t changes according to the differential equation

$$
x^{\prime \prime}(t)+4 x^{\prime}(t)+8 x(t)=0
$$

The motion of the particle is
(a) simple harmonic motion.
(b) underdamped.
(c) critically damped.

Solution: solve the associated quadratic.

$$
r^{2}+4 r+8=0 \Rightarrow r=-2 \pm 2 i
$$

Both roots are complex, so the system is underdamped. The answer is (b).
(d) overdamped.
2. What is the length of the polar curve with polar equation $r=e^{-\theta}$, for $0 \leq \theta \leq 1$?
(a) $\frac{e-1}{e}$
(b) $\sqrt{2}$
(c) $\sqrt{2}\left(\frac{e+1}{e}\right)$
(d) $\sqrt{2}\left(\frac{e-1}{e}\right)$

Solution:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta & =\int_{0}^{1} \sqrt{e^{-2 \theta}+\left(-e^{-\theta}\right)^{2}} d \theta \\
& =\sqrt{2} \int_{0}^{1} e^{-\theta} d \theta \\
& =\sqrt{2}\left[-e^{-\theta}\right]_{0}^{1}=\sqrt{2}(1-1 / e)
\end{aligned}
$$

The answer is (d).
3. What is the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{3^{n}}(x+1)^{n}$?

Solution: Check convergence at endpoints. At $x=-4$,

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{3^{n}}(-3)^{n}=\sum_{n=2}^{\infty} n
$$

which obviously diverges. At $x=2$,

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{3^{n}}\left(3^{n}\right)=\sum_{n=2}^{\infty}(-1)^{n} n
$$

which diverges by the n-th term test. The answer is (a).
4. For which values of t is the curve with parametric equations

$$
x=t^{2}-12 t, y=\ln \left(t^{2}+1\right)
$$

decreasing?
(a) $0<t<6$
(b) $0<t<3$
(c) $0<t<2$
(d) $t<0$ or $t>3$

Solution:

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{2 t}{t^{2}+1}}{2 t-12}=\frac{1}{t^{2}+1} \frac{t}{t-6} \\
\frac{d y}{d x}<0 \Leftrightarrow 0<t<6
\end{gathered}
$$

The answer is (a).
5. What is the area bounded by one loop of the curve with polar equation $r=\cos (3 \theta)$?
(a) $\frac{\pi}{12}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{3}$

Solution: $r=0 \Rightarrow 3 \theta= \pm \pi / 2 \Rightarrow \theta= \pm \pi / 6$.

$$
\begin{aligned}
A=2\left(\frac{1}{2} \int_{0}^{\pi / 6} r^{2} d \theta\right) & =\int_{0}^{\pi / 6} \frac{1+\cos (6 \theta)}{2} d \theta \\
& =\left[\frac{\theta}{2}+\frac{\sin (6 \theta)}{12}\right]_{0}^{\pi / 6}=\frac{\pi}{12}
\end{aligned}
$$

The answer is (a).
6. What is the arc length of the curve with parametric equations

$$
x=t \sin t ; y=t \cos t ; z=\frac{1}{3}(2 t)^{3 / 2}
$$

for $0 \leq t \leq 4$?

Solution:

$$
\begin{aligned}
& \int_{0}^{4} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t \\
= & \int_{0}^{4} \sqrt{(\sin t+t \cos t)^{2}+(\cos t-t \sin t)^{2}+(\sqrt{2 t})^{2}} d t \\
= & \int_{0}^{4} \sqrt{1+2 t+t^{2}} d t=\int_{0}^{4}(1+t) d t=\left[t+\frac{t^{2}}{2}\right]_{0}^{4}=12
\end{aligned}
$$

The answer is (c).
7. [12 marks; 4 for each part.] Decide if the following infinite series converge or diverge. Summarize your work at the right by marking your choice, and by indicating which convergence/divergence test you are using.
(a) $\sum_{n=1}^{\infty}\left[-\arctan \left(\frac{1}{n}\right)\right]^{n}$
\otimes Converges
Diverges
by the root test

Calculation:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|-\arctan \left(\frac{1}{n}\right)^{n}\right|}=\lim _{n \rightarrow \infty} \arctan \left(\frac{1}{n}\right)=\arctan 0=0<1
$$

(b) $\sum_{n=2}^{\infty} \frac{1}{n^{2} \ln n}$
\otimes Converges
Diverges
by the comparison test

Calculation:

$$
n \geq 3 \Rightarrow \ln n>1 \Rightarrow a_{n}=\frac{1}{n^{2} \ln n}<\frac{1}{n^{2}}=b_{n}
$$

The series $\sum b_{n}$ converges, since it is a p-series with $p=2>1$. So the series $\sum a_{n}$ also converges, by the comparison test.

$$
\text { (c) } \sum_{n=0}^{\infty} \frac{3^{n}+2^{n}}{4^{n}+3^{n}}
$$

\otimes Converges
Diverges
by the limit comparison test

Calculation: Let

$$
a_{n}=\frac{3^{n}+2^{n}}{4^{n}+3^{n}} ; b_{n}=\left(\frac{3}{4}\right)^{n} .
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{4^{n}}{3^{n}}\left(\frac{3^{n}+2^{n}}{4^{n}+3^{n}}\right)=\lim _{n \rightarrow \infty} \frac{(12)^{n}+8^{n}}{(12)^{n}+9^{n}}=\lim _{n \rightarrow \infty} \frac{1+(2 / 3)^{n}}{1+(3 / 4)^{n}}=1
$$

and the series $\sum b_{n}$ converges, since it is a geometric series with common ratio $r=3 / 4<1$. So the series $\sum a_{n}$ also converges, by the limit comparison test.
8. [12 marks] A fireman holds a fire hose 4 ft above the ground and aims it (towards a burning building) at an angle of 60° to the horizontal. The fireman is standing 15 ft from the building which is 20 ft high. The water leaves the hose with a speed of $40 \mathrm{ft} / \mathrm{sec}$. Determine exactly where the water hits the building: on the side or on the roof. (Assume that the acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$; ignore air resistance.)

Solution: Take $v_{0}=40$, angle of inclination $\alpha=60^{\circ}$, and let $(x, y)=(0,0)$ be the base of the wall. So $\left(x_{0}, y_{0}\right)=(-15,4)$.

Then

$$
x=-15+40 t \cos 60^{\circ}=-15+20 t
$$

and

$$
y=4+40 t \sin 60^{\circ}-16 t^{2}=4+20 \sqrt{3} t-16 t^{2}
$$

Does the water reach the roof? Yes:

$$
x=0 \Leftrightarrow t=\frac{3}{4} \Rightarrow y=4+15 \sqrt{3}-9=15 \sqrt{3}-5 \simeq 20.98>20 .
$$

How far along the roof does the water land?

$$
\begin{aligned}
y=20 & \Rightarrow 4+20 \sqrt{3} t-16 t^{2}=0 \\
& \Rightarrow t=\frac{5 \sqrt{3} \pm \sqrt{11}}{8} \\
& \Rightarrow t \simeq 0.668 \text { or } t=1.497
\end{aligned}
$$

At $t \simeq 1.497, x \simeq-15+20(1.497)=14.94$.
So the water hits the roof, about 14.94 feet from the edge.
9. [12 marks.] If x is the amount of salt disolved in a saline solution of volume V, at time t, in a large mixing tank, then

$$
\frac{d x}{d t}+\frac{r_{0}}{V} x=r_{i} c_{i}
$$

where c_{i} is the concentration of salt in a solution entering the mixing tank at rate r_{i}, and r_{0} is the rate at which the well-mixed solution is leaving the tank.
A 400 gallon tank initially contains 200 gallons of brine (i.e. saline solution) containing 75 lb of salt. Brine containing 1 lb of salt per gallon enters the tank at the rate of $5 \mathrm{gal} / \mathrm{sec}$, and the well-mixed brine in the tank flows out at the rate of $3 \mathrm{gal} / \mathrm{sec}$. How much salt will the tank contain when it is full of brine?

Solution: $V=200+\left(r_{i}-r_{o}\right) t=200+2 t$. The integrating factor of the differential equation

$$
\frac{d x}{d t}+\frac{3 x}{200+2 t}=5
$$

is

$$
\rho=e^{\int \frac{3}{200+2 t} d t}=e^{3 \ln (200+2 t) / 2}=(200+2 t)^{3 / 2}
$$

and so

$$
x=\frac{\int 5 \rho d t}{\rho}=\frac{(200+2 t)^{5 / 2}+C}{(200+2 t)^{3 / 2}}=(200+2 t)+\frac{C}{(200+2 t)^{3 / 2}} .
$$

Use the initial condition $t=0, x=75$ to find C :

$$
75=200+\frac{C}{200^{3 / 2}} \Leftrightarrow C=-125(200)^{3 / 2}
$$

Thus

$$
x=(200+2 t)-\frac{125(200)^{3 / 2}}{(200+2 t)^{3 / 2}}
$$

The tank is full when $V=400 \Leftrightarrow 200+2 t=400 \Leftrightarrow t=100$. At $t=100$,

$$
x=(200+200)-\frac{125(200)^{3 / 2}}{(200+200)^{3 / 2}}=400-\frac{125}{2^{3 / 2}} \simeq 355.8
$$

So when the tank is full of brine it contains about 355.8 lb of salt.
10. [10 marks] Find and classify all the critical points of $f(x, y)=2 x^{2}-4 x y+y^{4}+2$.

Solution: Let $z=2 x^{2}-4 x y+y^{4}+2$.

$$
\frac{\partial z}{\partial x}=4 x-4 y, \frac{\partial z}{\partial y}=-4 x+4 y^{3}
$$

Critical points:

$$
\begin{aligned}
& y^{3}=y \Rightarrow y=0,1 \text { or }-1 \Rightarrow(x, y)=(0,0),(1,1) \text { or }(-1,-1) \text {. }
\end{aligned}
$$

Second Derivative Test:

$$
\frac{\partial^{2} z}{\partial x^{2}}=4, \frac{\partial^{2} z}{\partial y^{2}}=12 y^{2}, \frac{\partial^{2} z}{\partial x \partial y}=-4 ; \Delta=48 y^{2}-16
$$

At $(0,0), \Delta=-16<0$, so f has a saddle point at $(0,0)$.
At $(1,1)$ and $(-1,-1), \Delta=32>0$; and

$$
\frac{\partial^{2} z}{\partial x^{2}}=4>0
$$

so f has a minimum value at both $(1,1)$ and $(-1,-1)$.
11. [10 marks] Approximate

$$
\int_{0}^{0.5} \frac{x}{\sqrt{1+x^{6}}} d x
$$

to within 10^{-6}, and explain why your approximation is correct to within 10^{-6}.

Solution: use the binomial series.

$$
\begin{aligned}
& \int_{0}^{0.5} x\left(1+x^{6}\right)^{-1 / 2} d x \\
= & \int_{0}^{0.5} x\left(1-\frac{1}{2} x^{6}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(x^{6}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(x^{6}\right)^{3}+\cdots\right) d x \\
= & \int_{0}^{0.5} x\left(1-\frac{1}{2} x^{6}+\frac{3}{8} x^{12}-\frac{5}{16} x^{18}+\cdots\right) d x \\
= & \int_{0}^{0.5}\left(x-\frac{1}{2} x^{7}+\frac{3}{8} x^{13}-\frac{5}{16} x^{19}+\cdots\right) d x \\
= & {\left[\frac{1}{2} x^{2}-\frac{1}{16} x^{8}+\frac{3}{112} x^{14}-\frac{5}{320} x^{20}+\cdots\right]_{0}^{0.5} } \\
= & 0.125-0.00024414+0.000001634-1.4 \times 10^{-8}+\ldots \\
= & 0.124757494 \ldots
\end{aligned}
$$

which is correct to within $1.4 \times 10^{-8}<10^{-6}$, by the alternating series remainder term.
12. [10 marks] Solve for y as a function of x if $y=0$ when $x=0$ and

$$
\frac{d y}{d x}=2 x e^{x^{2}-3 y}
$$

Solution: separate variables.

$$
\begin{aligned}
\frac{d y}{d x}=2 x e^{x^{2}-3 y} & \Leftrightarrow \int e^{3 y} d y=\int 2 x e^{x^{2}} d x \\
& \Leftrightarrow \frac{1}{3} e^{3 y}=e^{x^{2}}+c \\
& \Leftrightarrow e^{3 y}=3 e^{x^{2}}+C \\
& \Leftrightarrow 3 y=\ln \left(3 e^{x^{2}}+C\right) \\
& \Leftrightarrow y=\frac{1}{3} \ln \left(3 e^{x^{2}}+C\right)
\end{aligned}
$$

To find C, use initial conditions: $(x, y)=(0,0)$.

$$
0=\frac{1}{3} \ln \left(3 e^{0}+C\right) \Leftrightarrow C=-2
$$

So

$$
y=\frac{1}{3} \ln \left(3 e^{x^{2}}-2\right)
$$

13. [10 marks] Find the fifth degree Taylor polynomial of

$$
f(x)=e^{-x^{2}}+\ln (1+3 x)-\tan ^{-1}\left(x^{2}\right)
$$

at $a=0$.

Solution: use the fact that

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots, \text { for all } x
$$

Then

$$
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots
$$

Similarly,

$$
\begin{aligned}
\ln (1+3 x) & =3 x-\frac{(3 x)^{2}}{2}+\frac{(3 x)^{3}}{3}-\frac{(3 x)^{4}}{4}+\frac{(3 x)^{5}}{5}-\cdots \\
& =3 x-\frac{9}{2} x^{2}+9 x^{3}-\frac{81}{4} x^{4}+\frac{243}{5} x^{5}-\cdots
\end{aligned}
$$

and

$$
\tan ^{-1}\left(x^{2}\right)=x^{2}-\frac{1}{3} x^{6}+\cdots
$$

Thus

$$
P_{5}(x)=1+3 x-\frac{13}{2} x^{2}+9 x^{3}-\frac{79}{4} x^{4}+\frac{243}{5} x^{5} .
$$

