University of Toronto
 FACULTY OF APPLIED SCIENCE AND ENGINEERING
 Solutions to FINAL EXAMINATION, JUNE, 2008
 First Year - CHE, CIV, IND, LME, MEC, MMS

MAT 187H1F - CALCULUS II

Exam Type: A

Comments:

1. Questions $8,9,10,12$ and 13 are completely routine questions; question 12 was right out of the homework: \# 27 of Section 8.4.
2. Isolating y is the hardest part of Question 11.

Alternate Solutions:

1. 7(a) also converges by the comparison test, and the ratio test, but these solutions are both much trickier
2. 7(b) also diverges by the n-th term test.
3. 7 (c) also converges by the limit comparison test, with same choice of b_{n}; or by the integral test - but that is much harder!

Breakdown of Results: 141 students wrote this exam. The marks ranged from 15% to 84%, and the average was 61.7%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	0.0%
A	6.4%	$80-89 \%$	6.4%
B	25.5%	$70-79 \%$	25.5%
C	31.9%	$60-69 \%$	31.9%
D	15.6%	$50-59 \%$	15.6%
F	20.6%	$40-49 \%$	16.3%
		$30-39 \%$	2.8%
		$20-29 \%$	0.7%
		$10-19 \%$	0.7%
		$0-9 \%$	0.0%

1. What is the third degree Taylor polynomial of the function $f(x)=\ln (1+x)$ at $a=0$?
(a) $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}$
(b) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$
(c) $x+x^{2}+x^{3}$
(d) $x-x^{2}+x^{3}$

Solution:

$$
\begin{aligned}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots \\
\Rightarrow P_{3}(x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
\end{aligned}
$$

The answer is (b).
2. What is the area enclosed within one leaf of the three-leaved rose with polar equation $r=\sin (3 \theta)$?
(a) $\frac{1}{6} \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta$
(b) $\frac{1}{3} \int_{0}^{2 \pi} \sin ^{2}(3 \theta) d \theta$
(c) $\frac{1}{2} \int_{0}^{\pi / 6} \sin ^{2}(3 \theta) d \theta$
(d) $\frac{1}{2} \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta$

Solution:

$$
\begin{aligned}
\sin (3 \theta)=0 & \Rightarrow 3 \theta=0, \pm \pi, \pm 2 \pi, \ldots \\
& \Rightarrow \theta=0, \pm \frac{\pi}{3}, \pm \frac{2 \pi}{3}, \ldots \\
\Rightarrow A & =\frac{1}{2} \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta
\end{aligned}
$$

The answer is (d).
3. What is the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4^{n}}(x-2)^{n}$?

Solution:

(a) 4
(b) $\frac{1}{4}$
(c) 2
(d) $\frac{1}{2}$

$$
\begin{aligned}
a_{n}=\frac{\sqrt{n}}{4^{n}} \Rightarrow R & =\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}} \frac{4^{n+1}}{4^{n}} \\
& =4 \lim _{n \rightarrow \infty} \sqrt{\frac{n}{n+1}}=4 \cdot 1=4
\end{aligned}
$$

The answer is (a).
4. If the position vector of a particle at time t is given by $\mathbf{r}=2 t \mathbf{i}+t^{2} \mathbf{j}+\ln t \mathbf{k}$, then its speed at time $t=1$ is
(a) 3
(b) $\sqrt{3}$
(c) 9
(d) $\frac{1}{3}$

Solution: $\mathbf{v}=\frac{d \mathbf{r}}{d t}=2 \mathbf{i}+2 t \mathbf{j}+\frac{1}{t} \mathbf{k}$.
At $t=1$,

$$
\mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}
$$

and the speed is $|\mathbf{v}|=\sqrt{2^{2}+2^{2}+1^{2}}=3$.
The answer is (a).
5. What is the slope of the tangent line to the logarithmic spiral with polar equation $r=e^{\theta}$ at the point $(x, y)=\left(-e^{\pi}, 0\right)$?
(a) 1
(b) -1
(c) π
(d) e

$$
\begin{aligned}
& \text { Solution: } x=e^{\theta} \cos \theta ; y=e^{\theta} \sin \theta \\
& \qquad \frac{d y}{d x}=\frac{e^{\theta} \sin \theta+e^{\theta} \cos \theta}{e^{\theta} \cos \theta-e^{\theta} \sin \theta}=\frac{\sin \theta+\cos \theta}{\cos \theta-\sin \theta} \\
& \text { At } \theta=\pi, \frac{d y}{d x}=\frac{0-1}{-1-0}=1 \text {; so the answer is (a). }
\end{aligned}
$$

6. Find the length of the curve with parametric equations

$$
x=1-3 t^{2} ; y=3 t-t^{3}
$$

for $0 \leq t \leq 1$.
(a) 1
(b) 2
(c) 4
(d) 8

Solution:

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
= & \int_{0}^{1} \sqrt{(-6 t)^{2}+\left(3-3 t^{2}\right)^{2}} d t \\
= & \int_{0}^{1} \sqrt{9+18 t^{2}+9 t^{4}} d t \\
= & \int_{0}^{1}\left(3+3 t^{2}\right) d t \\
= & {\left[3 t+t^{3}\right]_{0}^{1}=4 }
\end{aligned}
$$

The answer is (c).
7. [12 marks; 4 for each part.] Decide if the following infinite series converge or diverge. Summarize your work at the right by marking your choice, and by indicating which convergence/divergence test you are using.

$$
\text { (a) } \sum_{n=0}^{\infty} \frac{n+2^{n}}{n+3^{n}}
$$

\otimes Converges
Diverges
by the limit comparison test

Calculation:

$$
a_{n}=\frac{n+2^{n}}{n+3^{n}} ; b_{n}=\left(\frac{2}{3}\right)^{n} \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n 3^{n}+6^{n}}{n 2^{n}+6^{n}}=\lim _{n \rightarrow \infty} \frac{n / 2^{n}+1}{n / 3^{n}+1}=1
$$

and the series $\sum b_{n}$ converges, since it is a geometric series with $r=2 / 3<1$.
(b) $\sum_{n=1}^{\infty}\left[\ln \left(\frac{1}{n}\right)\right]^{n}$

Converges
\otimes Diverges
by the root test

Calculation:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left[\ln \left(\frac{1}{n}\right)\right]^{n}\right|}=\lim _{n \rightarrow \infty}|-\ln n|=\infty>1
$$

(c) $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n^{2}}\right)$
by the comparison test

Calculation:

$$
a_{n}=\ln \left(1+\frac{1}{n^{2}}\right) ; b_{n}=\frac{1}{n^{2}} . \text { Then } a_{n}<b_{n}\left(\Leftrightarrow 1+\frac{1}{n^{2}}<e^{1 / n^{2}}\right)
$$

and the series $\sum b_{n}$ converges, since it is a p-series with $p=2>1$.
8. [12 marks] The displacement, $x(t)$, of an underdamped mass-spring system satisfies

$$
9 x^{\prime \prime}(t)+6 x^{\prime}(t)+145 x(t)=0 ; x(0)=3 \text { and } x^{\prime}(0)=7 .
$$

Solve for x as a function of t and sketch its graph for $0 \leq t \leq \pi$ indicating both its pseudo period and its time-varying amplitude.

Solution: the auxiliary quadratic is $9 r^{2}+6 r+145$. Solve:

$$
9 r^{2}+6 r+145=0 \Leftrightarrow r=\frac{-6 \pm \sqrt{36-5220}}{18}=\frac{-6 \pm 72 i}{18}=-\frac{1}{3} \pm 4 i .
$$

Thus

$$
x=C_{1} e^{-t / 3} \cos (4 t)+C_{2} e^{-t / 3} \sin (4 t) .
$$

To find C_{1} use the initial condition $x=3$ when $t=0$:

$$
3=C_{1} e^{0} \cos 0+C_{2} e^{0} \sin 0 \Leftrightarrow C_{1}=3 .
$$

To find C_{2} you need to find $x^{\prime}(t)$:
$x^{\prime}=C_{1}\left(-\frac{e^{-t / 3}}{3} \cos (4 t)-4 e^{-t / 3} \sin (4 t)\right)+C_{2}\left(-\frac{e^{-t / 3}}{3} \sin (4 t)+4 e^{-t / 3} \cos (4 t)\right)$.
Now substitute $t=0, x^{\prime}=7, C_{1}=3$:

$$
7=3\left(-\frac{1}{3}-0\right)+C_{2}(0+4) \Leftrightarrow 8=4 C_{2} \Leftrightarrow C_{2}=2
$$

Thus

$$
x=3 e^{-t / 3} \cos (4 t)+2 e^{-t / 3} \sin (4 t) .
$$

Graph:

The pseudo period is

$$
\frac{2 \pi}{4}=\frac{\pi}{2}
$$

time-varying amplitude is

$$
\sqrt{3^{2}+2^{2}} e^{-t / 3}=\sqrt{13} e^{-t / 3}
$$

9. [12 marks: 6 for each part.]
(a) Write down the first three non-zero terms of the Maclaurin series for each of $f(x)=x^{2} \sin x$ and $g(x)=\int_{0}^{x} f(t) d t$.

Solution:

$$
\begin{aligned}
f(x) & =x^{2}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right) \\
& =x^{3}-\frac{x^{5}}{6}+\frac{x^{7}}{120}-\cdots \\
g(x) & =\int_{0}^{x}\left(t^{3}-\frac{t^{5}}{6}+\frac{t^{7}}{120}-\cdots\right) d t \\
& =\left[\frac{t^{4}}{4}-\frac{t^{6}}{36}+\frac{t^{8}}{960}-\cdots\right]_{0}^{x} \\
& =\frac{x^{4}}{4}-\frac{x^{6}}{36}+\frac{x^{8}}{960}-\cdots
\end{aligned}
$$

(b) Approximate $\int_{0}^{0.5}\left(1+x^{4}\right)^{3 / 2} d x$ to within 10^{-6}, and explain why your approximation is correct to within 10^{-6}.

Solution: use the binomial theorem.

$$
\begin{aligned}
\left(1+x^{4}\right)^{3 / 2} d x & =1+\frac{3}{2} x^{4}+\frac{\frac{3}{2}\left(\frac{1}{2}\right)}{2!}\left(x^{4}\right)^{2}+\frac{\frac{3}{2}\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{3!}\left(x^{4}\right)^{3}+\cdots \\
& =1+\frac{3}{2} x^{4}+\frac{3}{8} x^{8}-\frac{1}{16} x^{12}+\cdots \\
\Rightarrow \int_{0}^{0.5}\left(1+x^{4}\right)^{3 / 2} d x & =\left[x+\frac{3}{10} x^{5}+\frac{1}{24} x^{9}-\frac{1}{208} x^{13}+\cdots\right]_{0}^{0.5} \\
& =0.5+0.009375+0.000081380208331 \ldots \\
& =0.50945638 \ldots
\end{aligned}
$$

which is correct to within $\frac{(0.5)^{13}}{208}=0.0000005868765 \cdots<10^{-6}$ by the alternating series remainder term.
10. [10 marks] Find and classify all the critical points of $f(x, y)=x+y+x^{2} y+x y^{2}$.

Solution: Let $z=x+y+x^{2} y+x y^{2}$.

$$
\frac{\partial z}{\partial x}=1+2 x y+y^{2}, \frac{\partial z}{\partial y}=1+x^{2}+2 x y
$$

Critical points:

$$
\begin{gathered}
\left\{\begin{array} { r l }
{ 2 x y + y ^ { 2 } } & { = - 1 } \\
{ x ^ { 2 } + 2 x y } & { = - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
y^{2}-x^{2}= \\
x^{2}+2 x y
\end{array}=-1\right.\right.
\end{gathered} \Leftrightarrow\left\{\begin{aligned}
y & = \pm x \\
x^{2}+2 x y & =-1
\end{aligned}\right\}
$$

Second Derivative Test:

$$
\frac{\partial^{2} z}{\partial x^{2}}=2 y, \frac{\partial^{2} z}{\partial y^{2}}=2 x, \frac{\partial^{2} z}{\partial x \partial y}=2 x+2 y ; \Delta=4 x y-4(x+y)^{2} .
$$

At $(1,-1), \Delta=-4<0$, and at $(-1,1), \Delta=-4<0$; so both critical points

$$
(1,-1,0) \text { and }(-1,1,0)
$$

are saddle points.
11. [10 marks] Solve the initial value problem

$$
\text { DE: } \frac{d y}{d x}=\frac{y-y^{2}}{x^{2}+1} ; \text { IC: } y=2 \text { if } x=0
$$

for y as a function of x.

Solution: separate variables.

$$
\begin{aligned}
\frac{d y}{d x}=\frac{y-y^{2}}{x^{2}+1} & \Leftrightarrow \int \frac{1}{y-y^{2}} d y=\int \frac{1}{x^{2}+1} d x \\
& \Leftrightarrow \int \frac{1}{y(1-y)} d y=\tan ^{-1} x+C \\
\text { (by partial fractions) } & \Leftrightarrow \int\left(\frac{1}{y}+\frac{1}{1-y}\right) d y=\tan ^{-1} x+C \\
& \Leftrightarrow \ln |y|-\ln |1-y|=\tan ^{-1} x+C \\
& \Leftrightarrow \ln \left|\frac{y}{1-y}\right|=\tan ^{-1} x+C
\end{aligned}
$$

To find C, use IC: $\ln \left|\frac{2}{1-2}\right|=0+C \Leftrightarrow C=\ln 2$. So

$$
\begin{aligned}
\ln \left|\frac{y}{1-y}\right| & =\tan ^{-1} x+\ln 2 \\
\Rightarrow\left|\frac{y}{1-y}\right| & =e^{\tan ^{-1} x+\ln 2}=2 e^{\tan ^{-1} x} \\
\Rightarrow \frac{y}{1-y} & =-2 e^{\tan ^{-1} x}, \text { by IC } \\
\Rightarrow \frac{1-y}{y} & =-\frac{1}{2} e^{-\tan ^{-1} x} \\
\Rightarrow \frac{1}{y}-1 & =-\frac{1}{2} e^{-\tan ^{-1} x} \\
\Rightarrow \frac{1}{y} & =1-\frac{1}{2} e^{-\tan ^{-1} x} \\
\Rightarrow y & =\frac{1}{1-\frac{1}{2} e^{-\tan ^{-1} x}} \text { or } \frac{2}{2-e^{-\tan ^{-1} x}}
\end{aligned}
$$

12. [10 marks] If x is the amount of salt disolved in a saline solution of volume V, at time t, in a large mixing tank, then

$$
\frac{d x}{d t}+\frac{r_{0}}{V} x=r_{i} c_{i}
$$

where c_{i} is the concentration of salt in a solution entering the mixing tank at rate r_{i}, and r_{0} is the rate at which the well-mixed solution is leaving the tank.
A 400 gallon tank initially contains 100 gallons of brine (i.e. saline solution) containing 50 lb of salt. Brine containing 1 lb of salt per gallon enters the tank at the rate of $5 \mathrm{gal} / \mathrm{sec}$, and the well-mixed brine in the tank flows out at the rate of $3 \mathrm{gal} / \mathrm{sec}$. How much salt will the tank contain when it is full of brine?

Solution: $V=100+\left(r_{i}-r_{o}\right) t=100+2 t$. The integrating factor of the differential equation

$$
\frac{d x}{d t}+\frac{3}{100+2 t} x=5
$$

is

$$
\rho=e^{\int \frac{3}{100+2 t} d t}=e^{3 \ln (100+2 t) / 2}=(100+2 t)^{3 / 2}
$$

and so

$$
x=\frac{\int 5 \rho d t}{\rho}=\frac{(100+2 t)^{5 / 2}+C}{(100+2 t)^{3 / 2}}=(100+2 t)+\frac{C}{(100+2 t)^{3 / 2}} .
$$

Use the initial condition $t=0, x=50$ to find C :

$$
50=100+\frac{C}{100^{3 / 2}} \Leftrightarrow C=-50000 .
$$

Thus

$$
x=(100+2 t)-\frac{50000}{(100+2 t)^{3 / 2}} .
$$

The tank is full when $V=400 \Leftrightarrow 100+2 t=400 \Leftrightarrow t=150$. At $t=150$,

$$
x=(100+300)-\frac{50000}{(100+300)^{3 / 2}}=400-\frac{25}{4}=393.75 .
$$

So when the tank is full of brine it contains about 393.75 lb of salt.
13. [10 marks] Use power series to find the Taylor series of

$$
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

at $a=0$; then answer the following questions about it, for 2 marks each:
(a) What is its interval of convergence?
(b) How does it compare with the Taylor series of $\cos x$?

Solution: use the fact that

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots, \text { for all } x
$$

Then

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\cdots
$$

So

$$
\begin{aligned}
\cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& =\frac{1}{2}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\cdots\right)\right) \\
& =\frac{1}{2}\left(2+\frac{2}{2!} x^{2}+\frac{2}{4!} x^{4}+\cdots\right) \\
& =1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{2 n}}{(2 n)!}+\cdots, \text { for all } x
\end{aligned}
$$

(a) The interval of convergence of the series for $\cosh x$ is $(-\infty, \infty)=\mathbb{R}$, since the series for e^{x} converges for all x.
(b) The Taylor series of $\cos x$ at $a=0$ is

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots
$$

The two series are almost identical; the series for $\cos x$ is the alternating version of the series of $\cosh x$.

