MAT187H1F - Calculus II - Spring 2017

Solutions to Term Test 2 - June 14, 2017

Time allotted: 110 minutes. Aids permitted: Casio FX-991 or Sharp EL-520 calculator; formula sheet.

Comments:

1. As with the first test, the results on this test were mediocre. And as with the first test, to raise the overall average slightly, I will count this test out of the top mark, which was 73 . This effectively raises the average on this test to 62.8%, from 57%.
2. Every question was done perfectly at least once, except for Question 6, which had a top mark of only 5 out of 10 .
3. The last question was poorly done, as a group. Though 6 students got it perfect, 12 students had zero on it!

Breakdown of Results: 38 students wrote this test. The marks ranged from 25% to 91%, and the average was 57%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	2.6%
A	10.5%	$80-89 \%$	7.9%
B	15.8%	$70-79 \%$	15.8%
C	15.8%	$60-69 \%$	15.8%
D	23.7%	$50-59 \%$	23.7%
F	34.2%	$40-49 \%$	18.4%
		$30-39 \%$	10.5%
		$20-29 \%$	5.3%
		$10-19 \%$	0.0%
		$0-9 \%$	0.0%

PART I : No explanation is necessary. Answer all of the following short-answer questions by putting your answer in the appropriate blank or by circling your choice(s).

1. [5 marks; 1 mark for each part. Avg: 3/5]
(a) $\sum_{k=0}^{\infty}\left(-\frac{3}{5}\right)^{k}=$

$$
\sum_{k=0}^{\infty}\left(-\frac{3}{5}\right)^{k}=\frac{1}{1-(-3 / 5)}=\frac{5}{5+3}=\frac{5}{8}
$$

(b) $\sum_{k=0}^{\infty} \frac{2}{(k+1)(k+3)}=$ \qquad

$$
\sum_{k=0}^{\infty} \frac{2}{(k+1)(k+3)}=\sum_{k=0}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+3}\right)=\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\cdots=\frac{3}{2}
$$

(c) The infinite series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$
(i) converges absolutely (ii) converges conditionally (iii) diverges
(d) The infinite series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{2 k+1}$
(i) converges absolutely (ii) converges conditionally (iii) diverges
(e) The infinite series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k^{2}+1}$
(i) converges absolutely (ii) converges conditionally (iii) diverges
2. [10 marks; 2 marks for each part. Avg: 4/10] Consider the power series $f(x)=\sum_{k=1}^{\infty} k x^{k-1}$.
(a) What is the radius of convergence of $f(x)$? \qquad

$$
a_{k}=k ; \lim _{k \rightarrow \infty} \frac{a_{k}}{a_{k+1}}=\lim _{k \rightarrow \infty} \frac{k}{k+1}=1 .
$$

(b) What is the open interval of convergence of $f(x)$?

Answer: $\quad(-1,1)$

For parts (c) and (d), assume x is in the open interval of convergence of $f(x)$.
(c) What is the power series for $\int_{0}^{x} f(t) d t$, in sigma notation?

$$
\int_{0}^{x} f(t) d t=\sum_{k=1}^{\infty} x^{k}
$$

(d) Find a formula for $\int_{0}^{x} f(t) d t$, not in terms of a power series. $\quad \int_{0}^{x} f(t) d t=\frac{x}{1-x}$.

$$
\sum_{k=1}^{\infty} x^{k}=\frac{1}{1-x}-1=\frac{x}{1-x}
$$

(e) What is the exact value of $f(1 / 2)$?

$$
f(1 / 2)=
$$

\qquad

$$
f(x)=\frac{d\left(\frac{x}{1-x}\right)}{d x}=\frac{1}{(1-x)^{2}} \Rightarrow f(1 / 2)=\frac{1}{(1-1 / 2)^{2}}=4
$$

PART II : Present complete solutions to the following questions in the space provided.
3. Avg: 11.1/15
3. [15 marks] Consider the curve with parametric equations $x=t^{3}-3 t, y=t^{4}-4 t^{3}$.
(a) [3 marks] Find the first derivative $\frac{d y}{d x}$ in terms of t.

Solution:

$$
y^{\prime}=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{4 t^{3}-12 t^{2}}{3 t^{2}-3}=\frac{4 t^{2}(t-3)}{3\left(t^{2}-1\right)} .
$$

(b) [7 marks] Find the coordinates, (x, y), of all the critical ${ }^{1}$ points on the curve.

Solution: need to use your derivative from part (a): $\frac{d y}{d x}=0$ for $t=0$ or $t=3$; and $\frac{d y}{d x}$ is undefined for $t= \pm 1$. Thus the four critical points are

1. $(x, y)=(0,0)$, for $t=0$.
2. $(x, y)=(18,-27)$, for $t=3$.
3. $(x, y)=(2,5)$, for $t=-1$.
4. $(x, y)=(-2,-3)$, for $t=1$.

[^0](c) [5 marks] It was shown in class that the second derivative in parametric form is given by
$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d x}{d t}}
$$
where $y^{\prime}=\frac{d y}{d x}$. Find the second derivative $\frac{d^{2} y}{d x^{2}}$ in terms of t, and use it to determine if any of the critical points you found in part (b) is a maximum or minimum point.

Solution: you need to differentiate your answer from part (a) with respect to t :

$$
\frac{d y^{\prime}}{d t}=\frac{d\left(\frac{4 t^{3}-12 t^{2}}{3 t^{2}-3}\right)}{d t}=\frac{\left(12 t^{2}-24 t\right)\left(3 t^{2}-3\right)-\left(4 t^{3}-12 t^{2}\right) 6 t}{\left(3 t^{2}-3\right)^{2}}=\frac{4}{3} \frac{t\left(t^{3}-3 t+6\right)}{\left(t^{2}-1\right)^{2}}
$$

Then

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d x}{d t}}=\frac{4}{9} \frac{t\left(t^{3}-3 t+6\right)}{\left(t^{2}-1\right)^{3}}
$$

Now for $t= \pm 1$ the second derivative is undefined, and for $t=0$ the second derivative is zero. So the only useful information from the second derivative is at $t=3$ for which

$$
\frac{d^{2} y}{d x^{2}}=\frac{96}{192}=\frac{1}{2}>0
$$

so there is a minimum point on the curve at $(x, y)=(18,-27)$.
For interest here is the graph of the curve:

4. [10 marks. Avg: 6.3/10] Let $f(x)=\cos (2 x) \sin \left(x^{2}\right)$.
(a) Find the first three non-zero terms in the Maclaurin series of
(i) [2 marks] $\cos (2 x)$

Solution:

$$
\cos (2 x)=1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots=1-2 x^{2}+\frac{2 x^{4}}{3}-\cdots
$$

(ii) [2 marks] $\sin \left(x^{2}\right)$

Solution:

$$
\sin \left(x^{2}\right)=x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}+\cdots=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\cdots
$$

(iii) [3 marks] $f(x)$

Solution:

$$
\begin{aligned}
f(x)=\cos (2 x) \sin \left(x^{2}\right) & =\left(1-2 x^{2}+\frac{2 x^{4}}{3}-\cdots\right)\left(x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\cdots\right) \\
& =x^{2}-\frac{x^{6}}{6}+\frac{x^{10}}{120}+\cdots-2 x^{4}+\frac{x^{8}}{3}-\frac{x^{12}}{60}+\cdots+\frac{2 x^{6}}{3}-\frac{x^{10}}{9}+\frac{x^{14}}{180}+\cdots \\
& =x^{2}-2 x^{4}+\frac{x^{6}}{2}+\cdots
\end{aligned}
$$

(b) [3 marks] What is the value of $f^{(6)}(0)$?

Solution: since the power series for $f(x)$ is the Maclaurin series for $f(x)$ we have

$$
\frac{1}{2}=\frac{f^{(6)}(0)}{6!} \Leftrightarrow f^{(6)}(0)=360
$$

5. [10 marks. Avg: 7.1/10] Approximate the value of

$$
\int_{0}^{1 / 2} \frac{x^{2}}{\sqrt{1+x^{4}}} d x
$$

correct to within 10^{-4}. Make sure to explain why your approximation is correct to within 10^{-4}.
Solution: use binomial series.

$$
\begin{aligned}
\frac{x^{2}}{\sqrt{1+x^{4}}} & =x^{2}\left(1+x^{4}\right)^{-1 / 2} \\
& =x^{2}\left(1+(-1 / 2) x^{4}+\frac{(-1 / 2)(-3 / 2)}{2!}\left(x^{4}\right)^{2}+\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{3!}\left(x^{4}\right)^{3}+\cdots\right) \\
& =x^{2}\left(1-\frac{x^{4}}{2}+\frac{3 x^{8}}{8}-\frac{5 x^{12}}{16}+\cdots\right) \\
& =x^{2}-\frac{x^{6}}{2}+\frac{3 x^{10}}{8}-\frac{5 x^{14}}{16}+\cdots \\
\Rightarrow \int_{0}^{1 / 2} \frac{x^{2}}{\sqrt{1+x^{4}}} d x & =\int_{0}^{1 / 2}\left(x^{2}-\frac{x^{6}}{2}+\frac{3 x^{10}}{8}-\frac{5 x^{14}}{16}+\cdots\right) d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{7}}{14}+\frac{3 x^{11}}{88}-\frac{x^{15}}{48}+\cdots\right]_{0}^{1 / 2} \\
& =\frac{1}{24}-\frac{1}{1792}+\frac{3}{180224}-\frac{1}{1572864}+\cdots \\
& =\underbrace{0.0416666667-0.000558035} \cdots+0.000016645 \cdots-0.000000635 \cdots+\cdots \\
& =0.04110862, \text { correct to within } 0.000016645<10^{-4},
\end{aligned}
$$

by the alternating series test remainder formula.
6. [10 marks. Avg: 2.1/10] Consider the power series $f(x)=\sum_{n=1}^{\infty}(n+1) n x^{n}$.
(a) [3 marks] What is the interval of convergence of $f(x)$?

Solution: let the radius of convergence be R. We have

$$
a_{n}=(n+1) n ; \quad R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1) n}{(n+2)(n+1)}=\lim _{n \rightarrow \infty} \frac{n}{n+2}=1 .
$$

So the open interval of convergence is $(-1,1)$. This is also the interval of convergence since neither series,

$$
\sum_{n=1}^{\infty}(n+1) n \text { nor } \sum_{n=1}^{\infty}(n+1) n(-1)^{n}
$$

converges, by the n-th term test for divergence:

$$
\lim _{n \rightarrow \infty} a_{n}=\infty \neq 0
$$

(b) [7 marks] Find a formula for $f(x)$ not in terms of power series.

Solution:

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty}(n+1) n x^{n} \\
& =x \sum_{n=1}^{\infty}(n+1) n x^{n-1} \\
& =x \sum_{n=1}^{\infty} \frac{d^{2} x^{n+1}}{d x^{2}} \\
& =x \frac{d^{2}}{d x^{2}}\left(\sum_{n=1}^{\infty} x^{n+1}\right), \text { as long as }|x|<1, \\
& =x \frac{d^{2}}{d x^{2}}\left(\frac{1}{1-x}-1-x\right) \\
& =x \frac{d}{d x}\left(\frac{1}{(1-x)^{2}}-1\right) \\
& =x\left(\frac{2}{(1-x)^{3}}\right) \\
& =\frac{2 x}{(1-x)^{3}}
\end{aligned}
$$

7. [10 marks. Avg: 7.5/10] For the given convergent infinite series determine at least how many terms of the series must be added up to approximate the sum of the series correctly to within 10^{-6}.
(a) [4 marks] $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{6}}$.

Solution: use the alternating series remainder term.

$$
\left|R_{n}\right|<a_{n+1}=\frac{1}{(n+1)^{6}}<10^{-6} \Rightarrow(n+1)^{6}>10^{6} \Rightarrow n+1>10 \Rightarrow n>9
$$

So you have to add at least 10 terms.
(b) [6 marks] $\sum_{k=1}^{\infty} \frac{1}{k^{6}}$.

Solution: use the integral test remainder term.

$$
R_{n}<\int_{n}^{\infty} \frac{1}{x^{6}} d x=\lim _{b \rightarrow \infty}\left[-\frac{1}{5 x^{5}}\right]_{n}^{b}=\frac{1}{5 n^{5}}<10^{-6} \Rightarrow 200000<n^{5} \Rightarrow n>10 \cdot 2^{1 / 5} \approx 11.5 .
$$

So you have to add at least 12 terms.
8. [10 marks. Avg: 4.6/10] By making use of appropriate series, find the following limits:
(a) [5 marks] $\lim _{x \rightarrow 0} \frac{x^{3}+x^{9}-\tan ^{-1}\left(x^{3}\right)}{x \sin \left(x^{8}\right)}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{3}+x^{9}-\tan ^{-1}\left(x^{3}\right)}{x \sin \left(x^{8}\right)} & =\lim _{x \rightarrow 0} \frac{x^{3}+x^{9}-\left(x^{3}-\frac{x^{9}}{3}+\frac{x^{15}}{5}-\cdots\right)}{x\left(x^{8}-\frac{x^{24}}{3!}+\frac{x^{40}}{5!}+\cdots\right)} \\
& =\lim _{x \rightarrow 0} \frac{\frac{4 x^{9}}{3}-\frac{x^{15}}{5}+\cdots}{x^{9}-\frac{x^{25}}{3!}+\frac{x^{41}}{5!}+\cdots} \\
& =\lim _{x \rightarrow 0} \frac{\frac{4}{3}-\frac{x^{6}}{5}+\cdots}{1-\frac{x^{16}}{3!}+\frac{x^{32}}{5!}+\cdots} \\
& =\frac{4}{3}
\end{aligned}
$$

(b) [5 marks] $\lim _{x \rightarrow \infty} \frac{e^{5 / x}-1}{\ln (1+2 / x)}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{5 / x}-1}{\ln (1+2 / x)} & =\lim _{x \rightarrow \infty} \frac{\left(1+5 / x+(5 / x)^{2} / 2!+(5 / x)^{3} / 3!+\cdots\right)-1}{2 / x-(2 / x)^{2} / 2+(2 / x)^{3} / 3-\cdots} \\
& =\lim _{x \rightarrow \infty} \frac{5 / x+(5 / x)^{2} / 2!+(5 / x)^{3} / 3!+\cdots}{2 / x-(2 / x)^{2} / 2+(2 / x)^{3} / 3-\cdots} \\
& =\lim _{x \rightarrow \infty} \frac{5+\left(5^{2} / x\right) / 2!+\left(5^{3} / x^{2}\right) / 3!+\cdots}{2-\left(2^{2} / x\right) / 2+\left(2^{3} / x^{2}\right) / 3-\cdots} \\
& =\frac{5}{2}
\end{aligned}
$$

This page is for rough work; it will not be marked unless you have indicated to mark it.

This page is for rough work; it will not be marked unless you have indicated to mark it.

[^0]: ${ }^{1}$ Recall: a critical point on a curve is a point where the derivative is zero or undefined.

